For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
- URL: http://arxiv.org/abs/2402.06855v2
- Date: Mon, 27 May 2024 16:58:55 GMT
- Title: For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
- Authors: Muthu Chidambaram, Rong Ge,
- Abstract summary: In this work, we analyze the role played by the label augmentation aspect of data augmentation methods.
We first prove that linear models on binary classification data trained with label augmentation learn only the minimum variance features in the data.
We then use our techniques to show that even for nonlinear models and general data distributions, the label smoothing and Mixup losses are lower bounded by a function of the model output variance.
- Score: 7.183341902583164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation has been pivotal in successfully training deep learning models on classification tasks over the past decade. An important subclass of data augmentation techniques - which includes both label smoothing and Mixup - involves modifying not only the input data but also the input label during model training. In this work, we analyze the role played by the label augmentation aspect of such methods. We first prove that linear models on binary classification data trained with label augmentation learn only the minimum variance features in the data, while standard training (which includes weight decay) can learn higher variance features. We then use our techniques to show that even for nonlinear models and general data distributions, the label smoothing and Mixup losses are lower bounded by a function of the model output variance. An important consequence of our results is negative: label smoothing and Mixup can be less robust to spurious correlations in the data. We verify that our theory reflects practice via experiments on image classification benchmarks modified to have spurious correlations.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning [44.91863420044712]
In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data.
We introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together.
Our method balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset.
arXiv Detail & Related papers (2023-09-21T09:44:39Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - MixRL: Data Mixing Augmentation for Regression using Reinforcement
Learning [2.1345682889327837]
Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks.
We show that mixing examples that either have a large data or label distance may have an increasingly-negative effect on model performance.
We propose MixRL, a data augmentation meta learning framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance.
arXiv Detail & Related papers (2021-06-07T07:01:39Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.