Disentangled Latent Energy-Based Style Translation: An Image-Level Structural MRI Harmonization Framework
- URL: http://arxiv.org/abs/2402.06875v2
- Date: Thu, 30 May 2024 01:34:02 GMT
- Title: Disentangled Latent Energy-Based Style Translation: An Image-Level Structural MRI Harmonization Framework
- Authors: Mengqi Wu, Lintao Zhang, Pew-Thian Yap, Hongtu Zhu, Mingxia Liu,
- Abstract summary: We develop a novel framework for unpaired image-level MRI harmonization.
It consists of (a) site-invariant image generation ( SIG), (b) site-specific style translation (SST), and (c) site-specific MRI synthesis (SMS)
By disentangling image generation and style translation in latent space, the DLEST can achieve efficient style translation.
- Score: 20.269574292365107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain magnetic resonance imaging (MRI) has been extensively employed across clinical and research fields, but often exhibits sensitivity to site effects arising from non-biological variations such as differences in field strength and scanner vendors. Numerous retrospective MRI harmonization techniques have demonstrated encouraging outcomes in reducing the site effects at the image level. However, existing methods generally suffer from high computational requirements and limited generalizability, restricting their applicability to unseen MRIs. In this paper, we design a novel disentangled latent energy-based style translation (DLEST) framework for unpaired image-level MRI harmonization, consisting of (a) site-invariant image generation (SIG), (b) site-specific style translation (SST), and (c) site-specific MRI synthesis (SMS). Specifically, the SIG employs a latent autoencoder to encode MRIs into a low-dimensional latent space and reconstruct MRIs from latent codes. The SST utilizes an energy-based model to comprehend the global latent distribution of a target domain and translate source latent codes toward the target domain, while SMS enables MRI synthesis with a target-specific style. By disentangling image generation and style translation in latent space, the DLEST can achieve efficient style translation. Our model was trained on T1-weighted MRIs from a public dataset (with 3,984 subjects across 58 acquisition sites/settings) and validated on an independent dataset (with 9 traveling subjects scanned in 11 sites/settings) in four tasks: histogram and feature visualization, site classification, brain tissue segmentation, and site-specific structural MRI synthesis. Qualitative and quantitative results demonstrate the superiority of our method over several state-of-the-arts.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Unpaired Volumetric Harmonization of Brain MRI with Conditional Latent Diffusion [13.563413478006954]
We propose a novel 3D MRI Harmonization framework through Conditional Latent Diffusion (HCLD)
It comprises a generalizable 3D autoencoder that encodes and decodes MRIs through a 4D latent space.
HCLD learns the latent distribution and generates harmonized MRIs with anatomical information from source MRIs while conditioned on target image style.
arXiv Detail & Related papers (2024-08-18T00:13:48Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - HiFi-Syn: Hierarchical Granularity Discrimination for High-Fidelity Synthesis of MR Images with Structure Preservation [11.924728060845595]
We introduce hierarchical granularity discrimination, which exploits various levels of semantic information present in medical images.
Our strategy utilizes three levels of discrimination granularity: pixel-level discrimination using a Brain Memory Bank, structure-level discrimination on each brain structure with a re-weighting strategy to focus on hard samples.
Our model may offer an alternative solution in scenarios where specific MR modalities of patients are unavailable.
arXiv Detail & Related papers (2023-11-21T09:15:24Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware
GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [1.7499351967216341]
generative adversarial networks (GANs) with the ability to synthesize realist images have shown great potential as an alternative to standard data augmentation techniques.
We propose a novel end-to-end, globally and locally aware image-to-image translation GAN (GLA-GAN) with a multi-path architecture that enforces both global structural integrity and fidelity to local details.
arXiv Detail & Related papers (2021-08-04T16:38:33Z) - ResViT: Residual vision transformers for multi-modal medical image
synthesis [0.0]
We propose a novel generative adversarial approach for medical image synthesis, ResViT, to combine local precision of convolution operators with contextual sensitivity of vision transformers.
Our results indicate the superiority of ResViT against competing methods in terms of qualitative observations and quantitative metrics.
arXiv Detail & Related papers (2021-06-30T12:57:37Z) - Self-Supervised Ultrasound to MRI Fetal Brain Image Synthesis [20.53251934808636]
Fetal brain magnetic resonance imaging (MRI) offers exquisite images of the developing brain but is not suitable for second-trimester anomaly screening.
In this paper we propose to generate MR-like images directly from clinical US images.
The proposed model is end-to-end trainable and self-supervised without any external annotations.
arXiv Detail & Related papers (2020-08-19T22:56:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.