ZECO: ZeroFusion Guided 3D MRI Conditional Generation
- URL: http://arxiv.org/abs/2503.18246v1
- Date: Mon, 24 Mar 2025 00:04:52 GMT
- Title: ZECO: ZeroFusion Guided 3D MRI Conditional Generation
- Authors: Feiran Wang, Bin Duan, Jiachen Tao, Nikhil Sharma, Dawen Cai, Yan Yan,
- Abstract summary: ZECO is a ZeroFusion guided 3D MRI conditional generation framework.<n>It extracts, compresses, and generates high-fidelity MRI images with corresponding 3D segmentation masks.<n>ZECO outperforms state-of-the-art models in both quantitative and qualitative evaluations on Brain MRI datasets.
- Score: 11.645873358288648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is crucial for enhancing diagnostic accuracy and treatment planning in Magnetic Resonance Imaging (MRI). However, acquiring precise lesion masks for segmentation model training demands specialized expertise and significant time investment, leading to a small dataset scale in clinical practice. In this paper, we present ZECO, a ZeroFusion guided 3D MRI conditional generation framework that extracts, compresses, and generates high-fidelity MRI images with corresponding 3D segmentation masks to mitigate data scarcity. To effectively capture inter-slice relationships within volumes, we introduce a Spatial Transformation Module that encodes MRI images into a compact latent space for the diffusion process. Moving beyond unconditional generation, our novel ZeroFusion method progressively maps 3D masks to MRI images in latent space, enabling robust training on limited datasets while avoiding overfitting. ZECO outperforms state-of-the-art models in both quantitative and qualitative evaluations on Brain MRI datasets across various modalities, showcasing its exceptional capability in synthesizing high-quality MRI images conditioned on segmentation masks.
Related papers
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.<n>Our model is based on neural operators, a discretization-agnostic architecture.<n>Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Coordinate-Based Neural Representation Enabling Zero-Shot Learning for 3D Multiparametric Quantitative MRI [4.707353256136099]
We propose SUMMIT, an innovative imaging methodology that includes data acquisition and an unsupervised reconstruction for simultaneous multiparametric qMRI.
The proposed unsupervised approach for qMRI reconstruction also introduces a novel zero-shot learning paradigm for multiparametric imaging applicable to various medical imaging modalities.
arXiv Detail & Related papers (2024-10-02T14:13:06Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Unpaired Volumetric Harmonization of Brain MRI with Conditional Latent Diffusion [13.563413478006954]
We propose a novel 3D MRI Harmonization framework through Conditional Latent Diffusion (HCLD)
It comprises a generalizable 3D autoencoder that encodes and decodes MRIs through a 4D latent space.
HCLD learns the latent distribution and generates harmonized MRIs with anatomical information from source MRIs while conditioned on target image style.
arXiv Detail & Related papers (2024-08-18T00:13:48Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
We propose a novel slice-based latent diffusion architecture to address the complexities of volumetric data generation.
This approach extends the joint distribution modeling of medical images and their associated masks, allowing a simultaneous generation of both under data-scarce regimes.
Our architecture can be conditioned by tumor characteristics, including size, shape, and relative position, thereby providing a diverse range of tumor variations.
arXiv Detail & Related papers (2024-06-08T09:53:45Z) - X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models [6.046082223332061]
X-Diffusion is a novel cross-sectional diffusion model that reconstructs detailed 3D MRI volumes from extremely sparse spatial-domain inputs.<n>A key aspect of X-Diffusion is that it models MRI data as holistic 3D volumes during the cross-sectional training and inference.<n>Our results demonstrate that X-Diffusion not only surpasses state-of-the-art methods in quantitative accuracy (PSNR) on unseen data but also preserves critical anatomical features.
arXiv Detail & Related papers (2024-04-30T14:53:07Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - BrainVoxGen: Deep learning framework for synthesis of Ultrasound to MRI [2.982610402087728]
The work proposes a novel deep-learning framework for the synthesis of three-dimensional MRI volumes from corresponding 3D ultrasound images of the brain.
This research holds promise for transformative applications in medical diagnostics and treatment planning within the neuroimaging domain.
arXiv Detail & Related papers (2023-10-11T20:37:59Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.