Estimating the Effect of Crosstalk Error on Circuit Fidelity Using Noisy Intermediate-Scale Quantum Devices
- URL: http://arxiv.org/abs/2402.06952v3
- Date: Tue, 05 Nov 2024 09:23:47 GMT
- Title: Estimating the Effect of Crosstalk Error on Circuit Fidelity Using Noisy Intermediate-Scale Quantum Devices
- Authors: Sovanmonynuth Heng, Myeongseong Go, Youngsun Han,
- Abstract summary: Crosstalk between parallel instructions can corrupt quantum states and cause incorrect program execution.
We present a necessary analysis of the crosstalk error effect on NISQ devices.
Our results demonstrate the crosstalk error model of three different IBM quantum devices over the experimental week.
- Score: 0.0
- License:
- Abstract: Current advancements in technology have focused the attention of the quantum computing community toward exploring the potential of near-term devices whose computing power surpasses that of classical computers in practical applications. An unresolved central question revolves around whether the inherent noise in these devices can be overcome or whether any potential quantum advantage would be limited. There is no doubt that crosstalk is one of the main sources of noise in noisy intermediate-scale quantum (NISQ) systems, and it poses a fundamental challenge to hardware designs. Crosstalk between parallel instructions can corrupt quantum states and cause incorrect program execution. In this study, we present a necessary analysis of the crosstalk error effect on NISQ devices. Our approach is extremely straightforward and practical to estimate the crosstalk error of various multi-qubit devices. In particular, we combine the randomized benchmarking (RB) and simultaneous randomized benchmarking (SRB) protocol to estimate the crosstalk error from the correlation controlled-NOT (CNOT) gate. We demonstrate this protocol experimentally on 5-, 7-, \& 16-qubit devices. Our results demonstrate the crosstalk error model of three different IBM quantum devices over the experimental week and compare the error variation against the machine, number of qubits, quantum volume, processor, and topology. We then confirm the improvement in the circuit fidelity on different benchmarks by up to 3.06x via inserting an instruction barrier, as compared with an IBM quantum noisy device which offers near-optimal crosstalk mitigation in practice. Finally, we discuss the current system limitation, its tradeoff on fidelity and depth, noise beyond the NISQ system, and mitigation opportunities to ensure that the quantum operation can perform its quantum magic undisturbed.
Related papers
- Quantum Data Centers in the Presence of Noise [0.0]
Single-processor monolithic quantum computers are affected by increased cross talk and difficulty of implementing gates when the number of qubits is increased.
In a QDC, multiple quantum processing units (QPUs) are linked together over short distances, allowing the total number of computational qubits to be increased without increasing the number of qubits on any one processor.
In doing so, the error incurred by operations at each QPU can be kept small, however additional noise will be added to the system due to the latency cost and errors incurred during inter-QPU entanglement distribution.
arXiv Detail & Related papers (2024-07-15T14:50:20Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Error-Mitigated Quantum Routing on Noisy Devices [0.0]
We experimentally deploy two promising quantum error mitigation methods, Zero-Noise Extrapolation (ZNE) and Probabilistic Error Cancellation (PEC)
We also investigate the routing performance provided by the concatenation of these two error-mitigation methods.
arXiv Detail & Related papers (2023-05-23T01:08:01Z) - Characterizing crosstalk of superconducting transmon processors [0.0]
We show how to efficiently and systematically characterize the magnitude of crosstalk effects on an entire quantum chip.
We propose more accurate means to simulate noisy quantum hardware by devising an appropriate crosstalk-aware noise model.
arXiv Detail & Related papers (2023-03-24T16:11:28Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Analyzing crosstalk error in the NISQ era [0.0]
NISQ hardware has unavoidable noises, and crosstalk error is a significant error source.
In this work, we first report on several protocols for characterizing crosstalk.
Then, we discuss different crosstalk mitigation methods from the hardware and software perspectives.
arXiv Detail & Related papers (2021-06-03T08:20:40Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Systematic Crosstalk Mitigation for Superconducting Qubits via
Frequency-Aware Compilation [3.2460743209388094]
One of the key challenges in current Noisy Intermediate-Scale Quantum (NISQ) computers is to control a quantum system with high-fidelity quantum gates.
We motivate a systematic approach for understanding and mitigating the crosstalk noise when executing near-term quantum programs on superconducting NISQ computers.
We present a general software solution to alleviate frequency crowding by systematically tuning qubit frequencies according to input programs.
arXiv Detail & Related papers (2020-08-21T14:35:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.