Characterizing crosstalk of superconducting transmon processors
- URL: http://arxiv.org/abs/2303.14103v1
- Date: Fri, 24 Mar 2023 16:11:28 GMT
- Title: Characterizing crosstalk of superconducting transmon processors
- Authors: Andreas Ketterer, Thomas Wellens
- Abstract summary: We show how to efficiently and systematically characterize the magnitude of crosstalk effects on an entire quantum chip.
We propose more accurate means to simulate noisy quantum hardware by devising an appropriate crosstalk-aware noise model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently available quantum computing hardware based on superconducting
transmon architectures realizes networks of hundreds of qubits with the
possibility of controlled nearest-neighbor interactions. However, the inherent
noise and decoherence effects of such quantum chips considerably alter basic
gate operations and lead to imperfect outputs of the targeted quantum
computations. In this work, we focus on the characterization of crosstalk
effects which manifest themselves in correlations between simultaneously
executed quantum gates on neighboring qubits. After a short explanation of the
physical origin of such correlations, we show how to efficiently and
systematically characterize the magnitude of such crosstalk effects on an
entire quantum chip using the randomized benchmarking protocol. We demonstrate
the introduced protocol by running it on real quantum hardware provided by IBM
observing significant alterations in gate fidelities due to crosstalk. Lastly,
we use the gained information in order to propose more accurate means to
simulate noisy quantum hardware by devising an appropriate crosstalk-aware
noise model.
Related papers
- Estimating the Effect of Crosstalk Error on Circuit Fidelity Using Noisy Intermediate-Scale Quantum Devices [0.0]
Crosstalk between parallel instructions can corrupt quantum states and cause incorrect program execution.
We present a necessary analysis of the crosstalk error effect on NISQ devices.
Our results demonstrate the crosstalk error model of three different IBM quantum devices over the experimental week.
arXiv Detail & Related papers (2024-02-10T13:42:14Z) - Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors [1.3230570759583702]
This work presents a comparative analysis of the resulting communication overhead among three processor topologies.
According to performance metrics of communication-to-computation ratio, mean qubit hotspotness, and temporal burstiness, the square lattice layout is favourable for quantum computer architectures at a scale.
arXiv Detail & Related papers (2024-02-01T10:16:04Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Scalable High-Performance Fluxonium Quantum Processor [0.0]
We propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk.
We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz.
arXiv Detail & Related papers (2022-01-23T21:49:04Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
We study the impact of quantum crosstalk on simultaneous gate operations in a qubit architecture.
Our analysis shows that for microwave-driven single-qubit gates, the dressing from the qubit-qubit coupling can cause non-negligible cross-driving errors.
arXiv Detail & Related papers (2021-10-25T01:21:04Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.