Next-Generation Teleophthalmology: AI-enabled Quality Assessment Aiding Remote Smartphone-based Consultation
- URL: http://arxiv.org/abs/2402.07118v2
- Date: Wed, 7 Aug 2024 13:14:00 GMT
- Title: Next-Generation Teleophthalmology: AI-enabled Quality Assessment Aiding Remote Smartphone-based Consultation
- Authors: Dhruv Srikanth, Jayang Gurung, N Satya Deepika, Vineet Joshi, Lopamudra Giri, Pravin Vaddavalli, Soumya Jana,
- Abstract summary: We propose an AI-based quality assessment system with instant feedback mimicking clinicians' judgments and tested on patient-captured images.
Blindness and other eye diseases are a global health concern, particularly in low- and middle-income countries like India.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blindness and other eye diseases are a global health concern, particularly in low- and middle-income countries like India. In this regard, during the COVID-19 pandemic, teleophthalmology became a lifeline, and the Grabi attachment for smartphone-based eye imaging gained in use. However, quality of user-captured image often remained inadequate, requiring clinician vetting and delays. In this backdrop, we propose an AI-based quality assessment system with instant feedback mimicking clinicians' judgments and tested on patient-captured images. Dividing the complex problem hierarchically, here we tackle a nontrivial part, and demonstrate a proof of the concept.
Related papers
- DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Self-supervised Domain Adaptation for Breaking the Limits of Low-quality
Fundus Image Quality Enhancement [14.677912534121273]
Low-quality fundus images and style inconsistency potentially increase uncertainty in the diagnosis of fundus disease.
We formulate two self-supervised domain adaptation tasks to disentangle the features of image content, low-quality factor and style information.
Our DASQE method achieves new state-of-the-art performance when only low-quality images are available.
arXiv Detail & Related papers (2023-01-17T15:07:20Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
When using medical images for diagnosis, it is important that the images are of high quality.
In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone.
This paper reports on the development of an AI system for flagging and explaining low-quality medical images in real-time.
arXiv Detail & Related papers (2022-07-06T14:53:26Z) - Automatic detection of glaucoma via fundus imaging and artificial
intelligence: A review [0.4215938932388722]
Glaucoma is a leading cause of irreversible vision impairment globally.
Fundus imaging is non-invasive and low-cost.
Can artificial intelligence automatically find the boundaries of the optic cup and disc.
arXiv Detail & Related papers (2022-04-12T07:47:13Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
cataract is a common eye disease and one of the leading causes of blindness and vision impairment.
We present a novel algorithm for cataract detection using near-infrared eye images.
Deep learning-based eye segmentation and multitask network classification networks are presented.
arXiv Detail & Related papers (2021-10-06T08:10:28Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - TrueImage: A Machine Learning Algorithm to Improve the Quality of
Telehealth Photos [8.27648210293057]
We focus on teledermatology, where photo quality is particularly important.
For telemedicine, dermatologists request that patients submit images of their lesions for assessment.
These images are often of insufficient quality to make a clinical diagnosis since patients do not have experience taking clinical photos.
We propose an automated image assessment machine learning pipeline, TrueImage, to detect poor quality dermatology photos and to guide patients in taking better photos.
arXiv Detail & Related papers (2020-10-01T17:47:57Z) - AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment
Optical Coherence Tomography [61.405005501608706]
Angle closure glaucoma (ACG) is a more aggressive disease than open-angle glaucoma.
Anterior Segment Optical Coherence Tomography (AS- OCT) imaging provides a fast and contactless way to discriminate angle closure from open angle.
There is no public AS- OCT dataset available for evaluating the existing methods in a uniform way.
We organized the Angle closure Glaucoma Evaluation challenge (AGE), held in conjunction with MICCAI 2019.
arXiv Detail & Related papers (2020-05-05T14:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.