Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users
- URL: http://arxiv.org/abs/2207.02726v1
- Date: Wed, 6 Jul 2022 14:53:26 GMT
- Title: Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users
- Authors: Ana Lucic, Sheeraz Ahmad, Amanda Furtado Brinhosa, Vera Liao, Himani
Agrawal, Umang Bhatt, Krishnaram Kenthapadi, Alice Xiang, Maarten de Rijke,
Nicholas Drabowski
- Abstract summary: When using medical images for diagnosis, it is important that the images are of high quality.
In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone.
This paper reports on the development of an AI system for flagging and explaining low-quality medical images in real-time.
- Score: 45.62380752173638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When using medical images for diagnosis, either by clinicians or artificial
intelligence (AI) systems, it is important that the images are of high quality.
When an image is of low quality, the medical exam that produced the image often
needs to be redone. In telemedicine, a common problem is that the quality issue
is only flagged once the patient has left the clinic, meaning they must return
in order to have the exam redone. This can be especially difficult for people
living in remote regions, who make up a substantial portion of the patients at
Portal Telemedicina, a digital healthcare organization based in Brazil. In this
paper, we report on ongoing work regarding (i) the development of an AI system
for flagging and explaining low-quality medical images in real-time, (ii) an
interview study to understand the explanation needs of stakeholders using the
AI system at OurCompany, and, (iii) a longitudinal user study design to examine
the effect of including explanations on the workflow of the technicians in our
clinics. To the best of our knowledge, this would be the first longitudinal
study on evaluating the effects of XAI methods on end-users -- stakeholders
that use AI systems but do not have AI-specific expertise. We welcome feedback
and suggestions on our experimental setup.
Related papers
- Next-Generation Teleophthalmology: AI-enabled Quality Assessment Aiding Remote Smartphone-based Consultation [0.0]
We propose an AI-based quality assessment system with instant feedback mimicking clinicians' judgments and tested on patient-captured images.
Blindness and other eye diseases are a global health concern, particularly in low- and middle-income countries like India.
arXiv Detail & Related papers (2024-02-11T07:27:01Z) - Online learning for X-ray, CT or MRI [6.211286162347693]
Medical imaging plays an important role in the medical sector in identifying diseases.
In recent years, medical professionals have started adopting Computer-Aided Diagnosis (CAD) systems to evaluate medical images.
Medical research is already entered a new era of research which is called Artificial Intelligence (AI)
arXiv Detail & Related papers (2023-06-10T17:14:41Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
We will focus on how AI-based approaches, particularly the use of Convolutional Neural Networks (CNN), can assist in disease detection through medical imaging technology.
CNN is a commonly used approach for image analysis due to its ability to extract features from raw input images.
arXiv Detail & Related papers (2023-06-03T09:05:35Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIA is a trustworthy deep learning framework for medical image analysis.
It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
arXiv Detail & Related papers (2022-12-06T05:30:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - Artificial Intelligence in Dry Eye Disease [4.444624718360766]
Dry eye disease (DED) has a prevalence of between 5 and 50%.
Recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning.
This is the first literature review on the use of AI in DED.
arXiv Detail & Related papers (2021-09-02T10:17:50Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Knowledge AI: New Medical AI Solution for Medical image Diagnosis [1.6587907336704157]
We propose a method of knowledge AI, which is a combination of perceptual AI and clinical knowledge and experience.
Based on this method, the geometric information mining of medical images can represent the experience and information and evaluate the quality of medical images.
arXiv Detail & Related papers (2021-01-08T15:30:09Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.