論文の概要: PASOA- PArticle baSed Bayesian Optimal Adaptive design
- arxiv url: http://arxiv.org/abs/2402.07160v2
- Date: Tue, 4 Jun 2024 15:01:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 12:58:06.412021
- Title: PASOA- PArticle baSed Bayesian Optimal Adaptive design
- Title(参考訳): PASOA-PASOA-PArticle Based Bayesian Optimal Adaptive Design
- Authors: Jacopo Iollo, Christophe Heinkelé, Pierre Alliez, Florence Forbes,
- Abstract要約: 本稿では,パラメータ推定のための後続分布の正確な推定を同時に提供することによって,逐次設計最適化を行う新しい手法を提案する。
予測情報ゲイン(EIG)を最大化するために、SMC(Sequential Monte Carlo)サンプリングと最適化を用いて、コントラスト推定原理を用いてシーケンシャル設計を行う。
提案手法は, 高い情報ゲインと正確なSMCサンプリングの両方を同時に行うことが提案され, 性能に欠かせないことを示す。
- 参考スコア(独自算出の注目度): 2.2186678387006435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new procedure named PASOA, for Bayesian experimental design, that performs sequential design optimization by simultaneously providing accurate estimates of successive posterior distributions for parameter inference. The sequential design process is carried out via a contrastive estimation principle, using stochastic optimization and Sequential Monte Carlo (SMC) samplers to maximise the Expected Information Gain (EIG). As larger information gains are obtained for larger distances between successive posterior distributions, this EIG objective may worsen classical SMC performance. To handle this issue, tempering is proposed to have both a large information gain and an accurate SMC sampling, that we show is crucial for performance. This novel combination of stochastic optimization and tempered SMC allows to jointly handle design optimization and parameter inference. We provide a proof that the obtained optimal design estimators benefit from some consistency property. Numerical experiments confirm the potential of the approach, which outperforms other recent existing procedures.
- Abstract(参考訳): 本稿では,パラメータ推論のための連続した後続分布の正確な推定を同時に提供することで,逐次設計の最適化を行う,ベイズ実験設計のためのPASOAという新しい手法を提案する。
逐次設計は、確率的最適化とシークエンシャルモンテカルロ(SMC)サンプリングを用いて、予測情報ゲイン(EIG)を最大化する。
連続した後続分布間の距離が大きくなるほど大きな情報ゲインが得られるため、このEIG目標は古典的なSMC性能を悪化させる可能性がある。
この問題に対処するため,大量の情報ゲインと正確なSMCサンプリングを同時に行うことを提案する。
この確率最適化と誘電型SMCの組み合わせにより、設計最適化とパラメータ推論を共同で扱うことができる。
得られた最適設計推定器がいくつかの整合性から恩恵を受けることを示す。
数値実験により、他の既存の手順よりも優れているアプローチの可能性が確認された。
関連論文リスト
- Bayesian Experimental Design via Contrastive Diffusions [2.2186678387006435]
実験設計(BOED)は、一連の実験の実行コストを削減する強力なツールである。
コスト効率の良い後続分布を導入し,EIGコントラストへのトラクタアクセスを提供する。
生成モデルをBOEDフレームワークに組み込むことで、以前は非現実的であったシナリオにおいて、そのスコープと使用範囲を広げる。
論文 参考訳(メタデータ) (2024-10-15T17:53:07Z) - Batched Bayesian optimization with correlated candidate uncertainties [44.38372821900645]
純粋に活用する qPO (multipoint of Optimality) による離散最適化のための獲得戦略を提案する。
本研究では, 大規模化学ライブラリのモデル誘導探索に適用し, バッチ化ベイズ最適化における最先端手法と同等以上の性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-08T20:13:12Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Variational Sequential Optimal Experimental Design using Reinforcement
Learning [0.0]
ベイジアン・フレームワークと情報ゲイン・ユーティリティを用いた有限列実験を最適に設計する新しい手法である変分逐次最適実験設計(vsOED)を導入する。
以上の結果から,従来の逐次設計アルゴリズムと比較して,サンプル効率が大幅に向上し,前方モデルシミュレーションの数が減少したことが示唆された。
論文 参考訳(メタデータ) (2023-06-17T21:47:19Z) - Towards Practical Preferential Bayesian Optimization with Skew Gaussian
Processes [8.198195852439946]
本稿では,信頼度が2対比較に限定される優先ベイズ最適化(BO)について検討する。
優越性BOの重要な課題は、優越性ガウス過程(GP)モデルを用いてフレキシブルな選好構造を表現することである。
本研究では,高い計算効率と低いサンプル複雑性を両立させる新しい手法を開発し,その効果を広範囲な数値実験により実証する。
論文 参考訳(メタデータ) (2023-02-03T03:02:38Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
本稿では,設計ユーティリティ機能のためのカオス拡張サロゲートモデル(PCE)の開発のための新しいアプローチを提案する。
この手法により,対象関数に対する適切な品質応答面の導出が可能となり,計算予算は複数の単点評価に匹敵する。
論文 参考訳(メタデータ) (2020-08-10T09:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。