Parameter Symmetry and Noise Equilibrium of Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2402.07193v3
- Date: Thu, 07 Nov 2024 02:39:30 GMT
- Title: Parameter Symmetry and Noise Equilibrium of Stochastic Gradient Descent
- Authors: Liu Ziyin, Mingze Wang, Hongchao Li, Lei Wu,
- Abstract summary: We show that gradient noise creates a systematic interplay of parameters $theta$ along the degenerate direction to a unique-independent fixed point $theta*$.
These points are referred to as the it noise equilibria because, at these points, noise contributions from different directions are balanced and aligned.
We show that the balance and alignment of gradient noise can serve as a novel alternative mechanism for explaining important phenomena such as progressive sharpening/flattening and representation formation within neural networks.
- Score: 8.347295051171525
- License:
- Abstract: Symmetries are prevalent in deep learning and can significantly influence the learning dynamics of neural networks. In this paper, we examine how exponential symmetries -- a broad subclass of continuous symmetries present in the model architecture or loss function -- interplay with stochastic gradient descent (SGD). We first prove that gradient noise creates a systematic motion (a ``Noether flow") of the parameters $\theta$ along the degenerate direction to a unique initialization-independent fixed point $\theta^*$. These points are referred to as the {\it noise equilibria} because, at these points, noise contributions from different directions are balanced and aligned. Then, we show that the balance and alignment of gradient noise can serve as a novel alternative mechanism for explaining important phenomena such as progressive sharpening/flattening and representation formation within neural networks and have practical implications for understanding techniques like representation normalization and warmup.
Related papers
- The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
We investigate the impact of neural parameter symmetries by introducing new neural network architectures.
We develop two methods, with some provable guarantees, of modifying standard neural networks to reduce parameter space symmetries.
Our experiments reveal several interesting observations on the empirical impact of parameter symmetries.
arXiv Detail & Related papers (2024-05-30T16:32:31Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
We show that WSINDy can successfully identify a reduced Hamiltonian system in the presence of large intrinsics.
WSINDy naturally preserves the Hamiltonian structure by restricting to a trial basis of Hamiltonian vector fields.
We also provide a contribution to averaging theory by proving that first-order averaging at the level of vector fields preserves Hamiltonian structure in nearly-periodic Hamiltonian systems.
arXiv Detail & Related papers (2023-10-09T17:20:04Z) - Symmetry Induces Structure and Constraint of Learning [0.0]
We unveil the importance of the loss function symmetries in affecting, if not deciding, the learning behavior of machine learning models.
Common instances of mirror symmetries in deep learning include rescaling, rotation, and permutation symmetry.
We show that the theoretical framework can explain intriguing phenomena, such as the loss of plasticity and various collapse phenomena in neural networks.
arXiv Detail & Related papers (2023-09-29T02:21:31Z) - Law of Balance and Stationary Distribution of Stochastic Gradient
Descent [11.937085301750288]
We prove that the minibatch noise of gradient descent (SGD) regularizes the solution towards a balanced solution whenever the loss function contains a rescaling symmetry.
We then derive the stationary distribution of gradient flow for a diagonal linear network with arbitrary depth and width.
These phenomena are shown to exist uniquely in deep networks, implying a fundamental difference between deep and shallow models.
arXiv Detail & Related papers (2023-08-13T03:13:03Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Noether: The More Things Change, the More Stay the Same [1.14219428942199]
Noether's celebrated theorem states that symmetry leads to conserved quantities.
In the realm of neural networks under gradient descent, model symmetries imply restrictions on the gradient path.
Symmetry can be thought of as one further important tool in understanding the performance of neural networks under gradient descent.
arXiv Detail & Related papers (2021-04-12T14:41:05Z) - Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections [73.95786440318369]
We focus on the so-called implicit effect' of GNIs, which is the effect of the injected noise on the dynamics of gradient descent (SGD)
We show that this effect induces an asymmetric heavy-tailed noise on gradient updates.
We then formally prove that GNIs induce an implicit bias', which varies depending on the heaviness of the tails and the level of asymmetry.
arXiv Detail & Related papers (2021-02-13T21:28:09Z) - Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
Dynamics [26.485269202381932]
Understanding the dynamics of neural network parameters during training is one of the key challenges in building a theoretical foundation for deep learning.
We show that any such symmetry imposes stringent geometric constraints on gradients and Hessians, leading to an associated conservation law.
We apply tools from finite difference methods to derive modified gradient flow, a differential equation that better approximates the numerical trajectory taken by SGD at finite learning rates.
arXiv Detail & Related papers (2020-12-08T20:33:30Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.