論文の概要: Supervised Reconstruction for Silhouette Tomography
- arxiv url: http://arxiv.org/abs/2402.07298v1
- Date: Sun, 11 Feb 2024 20:27:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 16:19:27.085997
- Title: Supervised Reconstruction for Silhouette Tomography
- Title(参考訳): シルエットトモグラフィの再建
- Authors: Evan Bell, Michael T. McCann, Marc Klasky
- Abstract要約: 我々は,X線CTの新しい定式化であるシルエットトモグラフィーを導入する。
シルエットトモグラフィーを数学的に定式化し、任意の解が存在すると仮定して、問題の特定の解を得るための簡単な方法を提供する。
次に、深層ニューラルネットワークを用いてシルエットトモグラフィー問題を解決する教師付き再構成手法を提案する。
- 参考スコア(独自算出の注目度): 1.9643748953805937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce silhouette tomography, a novel formulation of
X-ray computed tomography that relies only on the geometry of the imaging
system. We formulate silhouette tomography mathematically and provide a simple
method for obtaining a particular solution to the problem, assuming that any
solution exists. We then propose a supervised reconstruction approach that uses
a deep neural network to solve the silhouette tomography problem. We present
experimental results on a synthetic dataset that demonstrate the effectiveness
of the proposed method.
- Abstract(参考訳): 本稿では,撮像系の形状のみに依存するx線ctの新しい定式化であるsilhouette tomographyを提案する。
シルエットトモグラフィーを数学的に定式化し、任意の解が存在すると仮定して、問題の特定の解を得る簡単な方法を提供する。
次に,深層ニューラルネットワークを用いてシルエットトモグラフィ問題を解決する教師あり再構成手法を提案する。
本稿では,提案手法の有効性を示す合成データセットについて実験結果を示す。
関連論文リスト
- Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
X線CT画像再構成のためのハイブリッド教師なし学習フレームワークを提案する。
提案された各訓練ブロックは、決定論的MBIRソルバとニューラルネットワークで構成されている。
限られた訓練データを用いた低用量CT画像再構成における本学習ハイブリッドモデルの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-19T20:23:59Z) - Quantum optimization algorithms for CT image segmentation from X-ray data [0.0]
本稿では,2次非制約二元最適化(QUBO)と呼ばれる高度な量子最適化アルゴリズムを用いた新しい手法を提案する。
ラドン変換を用いて、実験的に得られたシングラムと量子化されたセグメンテーションCT画像から得られた量子化されたシングラムとの差を最小限に抑えたX線投影データからのセグメンテーションCT画像の取得を可能にする。
本研究は,実世界のX線データの検証にD-Waveのハイブリッドソルバシステムを利用した。
論文 参考訳(メタデータ) (2023-06-08T19:37:43Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Spectral Bandwidth Recovery of Optical Coherence Tomography Images using
Deep Learning [0.6990493129893112]
取得速度を向上する技術開発は、しばしばスペクトル帯域幅が狭くなり、したがって軸方向分解能が低くなる。
従来,OCTのサブサンプルデータを再構成するために画像処理技術が用いられてきた。
本研究では,スペクトル領域におけるガウスウィンドウ化による軸方向スキャン(Aスキャン)分解能の低下をシミュレートし,画像特徴再構成のための学習的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-01-02T02:18:32Z) - Self-Supervised Coordinate Projection Network for Sparse-View Computed
Tomography [31.774432128324385]
本研究では,1つのSVシングラムからアーチファクトフリーCT像を再構成する自己監督コーディネートプロジェクションnEtwork(SCOPE)を提案する。
暗黙的ニューラル表現ネットワーク(INR)を用いた類似の問題を解決する最近の研究と比較して、我々の重要な貢献は効果的で単純な再投射戦略である。
論文 参考訳(メタデータ) (2022-09-12T06:14:04Z) - Bayesian Experimental Design for Computed Tomography with the Linearised
Deep Image Prior [0.19573380763700707]
本稿では,線形化深度画像を用いた新しい手法を提案する。
パイロット測度から得られる情報を、角度選択基準に組み込むことができる。
優先方向の合成データセットでは、線形化されたDIP設計により、スキャン数を最大30%削減できる。
論文 参考訳(メタデータ) (2022-07-11T12:45:31Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
放射線写真は、X線を用いて患者の内部解剖を視覚化し、3D情報を2次元平面に投影する。
私たちの知る限りでは、ラジオグラフィビューの合成に関する最初の研究である。
本手法は,3次元空間におけるX線撮影の理解を得ることにより,地中骨ラベルを使わずに,X線撮影による骨抽出と骨抑制に応用できることが示唆された。
論文 参考訳(メタデータ) (2020-12-04T05:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。