Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization
- URL: http://arxiv.org/abs/2402.07341v2
- Date: Sat, 8 Jun 2024 00:23:36 GMT
- Title: Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization
- Authors: Kwang-Sung Jun, Jungtaek Kim,
- Abstract summary: Adapting to a priori unknown noise level is a very important but challenging problem in sequential decision-making.
We propose a novel confidence set that is semi-adaptive' to the unknown sub-Gaussian parameter $sigma_*2$.
For bounded rewards, we propose a novel variance-adaptive confidence set that has much improved numerical performance upon prior art.
- Score: 15.275864909088577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting to a priori unknown noise level is a very important but challenging problem in sequential decision-making as efficient exploration typically requires knowledge of the noise level, which is often loosely specified. We report significant progress in addressing this issue for linear bandits in two respects. First, we propose a novel confidence set that is `semi-adaptive' to the unknown sub-Gaussian parameter $\sigma_*^2$ in the sense that the (normalized) confidence width scales with $\sqrt{d\sigma_*^2 + \sigma_0^2}$ where $d$ is the dimension and $\sigma_0^2$ is the specified sub-Gaussian parameter (known) that can be much larger than $\sigma_*^2$. This is a significant improvement over $\sqrt{d\sigma_0^2}$ of the standard confidence set of Abbasi-Yadkori et al. (2011), especially when $d$ is large or $\sigma_*^2=0$. We show that this leads to an improved regret bound in linear bandits. Second, for bounded rewards, we propose a novel variance-adaptive confidence set that has much improved numerical performance upon prior art. We then apply this confidence set to develop, as we claim, the first practical variance-adaptive linear bandit algorithm via an optimistic approach, which is enabled by our novel regret analysis technique. Both of our confidence sets rely critically on `regret equality' from online learning. Our empirical evaluation in diverse Bayesian optimization tasks shows that our proposed algorithms demonstrate better or comparable performance compared to existing methods.
Related papers
- Variance-Dependent Regret Bounds for Non-stationary Linear Bandits [52.872628573907434]
We propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds.
We introduce two novel algorithms: Restarted Weighted$textOFUL+$ and Restarted $textSAVE+$.
Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary linear bandits under different settings.
arXiv Detail & Related papers (2024-03-15T23:36:55Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation [22.758674468435302]
In a heavy-tailed noise regime, the difference between the gradient and the true rate is assumed to have a finite $p-th moment.
This paper provides a comprehensive analysis of nonsmooth convex optimization with heavy-tailed noises.
arXiv Detail & Related papers (2023-03-22T03:05:28Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - Extra-Newton: A First Approach to Noise-Adaptive Accelerated
Second-Order Methods [57.050204432302195]
This work proposes a universal and adaptive second-order method for minimizing second-order smooth, convex functions.
Our algorithm achieves $O(sigma / sqrtT)$ convergence when the oracle feedback is with variance $sigma2$, and improves its convergence to $O( 1 / T3)$ with deterministic oracles.
arXiv Detail & Related papers (2022-11-03T14:12:51Z) - Linear Contextual Bandits with Adversarial Corruptions [91.38793800392108]
We study the linear contextual bandit problem in the presence of adversarial corruption.
We present a variance-aware algorithm that is adaptive to the level of adversarial contamination $C$.
arXiv Detail & Related papers (2021-10-25T02:53:24Z) - Stochastic Linear Bandits Robust to Adversarial Attacks [117.665995707568]
We provide two variants of a Robust Phased Elimination algorithm, one that knows $C$ and one that does not.
We show that both variants attain near-optimal regret in the non-corrupted case $C = 0$, while incurring additional additive terms respectively.
In a contextual setting, we show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing $C$.
arXiv Detail & Related papers (2020-07-07T09:00:57Z) - Differentiable Linear Bandit Algorithm [6.849358422233866]
Upper Confidence Bound is arguably the most commonly used method for linear multi-arm bandit problems.
We introduce a gradient estimator, which allows the confidence bound to be learned via gradient ascent.
We show that the proposed algorithm achieves a $tildemathcalO(hatbetasqrtdT)$ upper bound of $T$-round regret, where $d$ is the dimension of arm features and $hatbeta$ is the learned size of confidence bound.
arXiv Detail & Related papers (2020-06-04T16:43:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.