Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
- URL: http://arxiv.org/abs/2403.10732v1
- Date: Fri, 15 Mar 2024 23:36:55 GMT
- Title: Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
- Authors: Zhiyong Wang, Jize Xie, Yi Chen, John C. S. Lui, Dongruo Zhou,
- Abstract summary: We propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds.
We introduce two novel algorithms: Restarted Weighted$textOFUL+$ and Restarted $textSAVE+$.
Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary linear bandits under different settings.
- Score: 52.872628573907434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the non-stationary stochastic linear bandit problem where the reward distribution evolves each round. Existing algorithms characterize the non-stationarity by the total variation budget $B_K$, which is the summation of the change of the consecutive feature vectors of the linear bandits over $K$ rounds. However, such a quantity only measures the non-stationarity with respect to the expectation of the reward distribution, which makes existing algorithms sub-optimal under the general non-stationary distribution setting. In this work, we propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds. Specifically, we introduce two novel algorithms: Restarted Weighted$\text{OFUL}^+$ and Restarted $\text{SAVE}^+$. These algorithms address cases where the variance information of the rewards is known and unknown, respectively. Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary stochastic linear bandits under different settings. Experimental evaluations further validate the superior performance of our proposed algorithms over existing works.
Related papers
- Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear
Contextual Bandits and Markov Decision Processes [59.61248760134937]
We propose an efficient algorithm to achieve a regret of $tildeO(sqrtT+zeta)$.
The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit.
We generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $zeta$.
arXiv Detail & Related papers (2022-12-12T15:04:56Z) - Bandit Algorithms for Prophet Inequality and Pandora's Box [13.709418181148148]
We study the Prophet Inequality and Pandora's Box problems in the Multi-Armed Bandits model.
Our results give near-optimal $tildeO(mathsfpoly(n)sqrtT)$ total regret algorithms for both Prophet Inequality and Pandora's Box.
arXiv Detail & Related papers (2022-11-16T00:10:35Z) - Non-Stationary Bandits under Recharging Payoffs: Improved Planning with
Sublinear Regret [34.44347218903429]
The multi-armed bandit setting has been recently studied in the non-stationary regime.
Mean payoff of each action is a non-decreasing function of the number of rounds passed since it was last played.
We show how our algorithm can be transformed into a bandit algorithm with sublinear regret.
arXiv Detail & Related papers (2022-05-29T23:55:36Z) - Variance-Aware Sparse Linear Bandits [64.70681598741417]
Worst-case minimax regret for sparse linear bandits is $widetildeThetaleft(sqrtdTright)$.
In the benign setting where there is no noise and the action set is the unit sphere, one can use divide-and-conquer to achieve an $widetildemathcal O(1)$ regret.
We develop a general framework that converts any variance-aware linear bandit algorithm to a variance-aware algorithm for sparse linear bandits.
arXiv Detail & Related papers (2022-05-26T15:55:44Z) - Linear Contextual Bandits with Adversarial Corruptions [91.38793800392108]
We study the linear contextual bandit problem in the presence of adversarial corruption.
We present a variance-aware algorithm that is adaptive to the level of adversarial contamination $C$.
arXiv Detail & Related papers (2021-10-25T02:53:24Z) - Stochastic Linear Bandits Robust to Adversarial Attacks [117.665995707568]
We provide two variants of a Robust Phased Elimination algorithm, one that knows $C$ and one that does not.
We show that both variants attain near-optimal regret in the non-corrupted case $C = 0$, while incurring additional additive terms respectively.
In a contextual setting, we show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing $C$.
arXiv Detail & Related papers (2020-07-07T09:00:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.