Score-based Diffusion Models via Stochastic Differential Equations -- a Technical Tutorial
- URL: http://arxiv.org/abs/2402.07487v2
- Date: Sat, 22 Jun 2024 14:31:33 GMT
- Title: Score-based Diffusion Models via Stochastic Differential Equations -- a Technical Tutorial
- Authors: Wenpin Tang, Hanyang Zhao,
- Abstract summary: This article focuses on the score-based diffusion models, with a particular focus on the formulation via differential equations (SDE)
After a gentle introduction, we discuss the two pillars in the diffusion modeling -- sampling and score matching.
Short proofs are given to illustrate the main idea of the stated results.
- Score: 5.217870815854702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This is an expository article on the score-based diffusion models, with a particular focus on the formulation via stochastic differential equations (SDE). After a gentle introduction, we discuss the two pillars in the diffusion modeling -- sampling and score matching, which encompass the SDE/ODE sampling, score matching efficiency, the consistency models, and reinforcement learning. Short proofs are given to illustrate the main idea of the stated results. The article is primarily a technical introduction to the field, and practitioners may also find some analysis useful in designing new models or algorithms.
Related papers
- A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems [10.820654486318336]
This study introduces a training-free conditional diffusion model for learning unknown differential equations (SDEs) using data.
The proposed approach addresses key challenges in computational efficiency and accuracy for modeling SDEs.
The learned models exhibit significant improvements in predicting both short-term and long-term behaviors of unknown systems.
arXiv Detail & Related papers (2024-10-04T03:07:36Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Operator-informed score matching for Markov diffusion models [8.153690483716481]
This paper argues that Markov diffusion models enjoy an advantage over other types of diffusion model, as their associated operators can be exploited to improve the training process.
We propose operator-informed score matching, a variance reduction technique that is straightforward to implement in both low- and high-dimensional diffusion modeling.
arXiv Detail & Related papers (2024-06-13T13:07:52Z) - Closing the ODE-SDE gap in score-based diffusion models through the
Fokker-Planck equation [0.562479170374811]
We rigorously describe the range of dynamics and approximations that arise when training score-based diffusion models.
We show numerically that conventional score-based diffusion models can exhibit significant differences between ODE- and SDE-induced distributions.
arXiv Detail & Related papers (2023-11-27T16:44:50Z) - Variance-Preserving-Based Interpolation Diffusion Models for Speech
Enhancement [53.2171981279647]
We present a framework that encapsulates both the VP- and variance-exploding (VE)-based diffusion methods.
To improve performance and ease model training, we analyze the common difficulties encountered in diffusion models.
We evaluate our model against several methods using a public benchmark to showcase the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-14T14:22:22Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
The proposed BSDE-based diffusion model represents a novel approach to diffusion modeling, which extends the application of differential equations (SDEs) in machine learning.
We demonstrate the theoretical guarantees of the model, the benefits of using Lipschitz networks for score matching, and its potential applications in various areas such as diffusion inversion, conditional diffusion, and uncertainty quantification.
arXiv Detail & Related papers (2023-04-26T01:15:35Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.