Correctness Verification of Neural Networks Approximating Differential
Equations
- URL: http://arxiv.org/abs/2402.07621v1
- Date: Mon, 12 Feb 2024 12:55:35 GMT
- Title: Correctness Verification of Neural Networks Approximating Differential
Equations
- Authors: Petros Ellinas, Rahul Nellikath, Ignasi Ventura, Jochen Stiasny,
Spyros Chatzivasileiadis
- Abstract summary: Neural Networks (NNs) approximate the solution of Partial Differential Equations (PDEs)
NNs can become integral parts of simulation software tools which can accelerate the simulation of complex dynamic systems more than 100 times.
This work addresses the verification of these functions by defining the NN derivative as a finite difference approximation.
For the first time, we tackle the problem of bounding an NN function without a priori knowledge of the output domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Verification of Neural Networks (NNs) that approximate the solution of
Partial Differential Equations (PDEs) is a major milestone towards enhancing
their trustworthiness and accelerating their deployment, especially for
safety-critical systems. If successful, such NNs can become integral parts of
simulation software tools which can accelerate the simulation of complex
dynamic systems more than 100 times. However, the verification of these
functions poses major challenges; it is not straightforward how to efficiently
bound them or how to represent the derivative of the NN. This work addresses
both these problems. First, we define the NN derivative as a finite difference
approximation. Then, we formulate the PDE residual bounding problem alongside
the Initial Value Problem's error propagation. Finally, for the first time, we
tackle the problem of bounding an NN function without a priori knowledge of the
output domain. For this, we build a parallel branching algorithm that combines
the incomplete CROWN solver and Gradient Attack for termination and domain
rejection conditions. We demonstrate the strengths and weaknesses of the
proposed framework, and we suggest further work to enhance its efficiency.
Related papers
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Contracting Neural-Newton Solver [0.0]
We develop a recurrent NN simulation tool, termed the Contracting Neural-Newton Solver (CoNNS)
In this paper, we model the Newton solver at the heart of an implicit Runge-Kutta integrator as a contracting map iteratively seeking this fixed point.
We prove that successive passes through the NN are guaranteed to converge to a unique, fixed point.
arXiv Detail & Related papers (2021-06-04T15:14:12Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - PFNN: A Penalty-Free Neural Network Method for Solving a Class of
Second-Order Boundary-Value Problems on Complex Geometries [4.620110353542715]
We present PFNN, a penalty-free neural network method, to solve a class of second-order boundary-value problems.
PFNN is superior to several existing approaches in terms of accuracy, flexibility and robustness.
arXiv Detail & Related papers (2020-04-14T13:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.