PFNN: A Penalty-Free Neural Network Method for Solving a Class of
Second-Order Boundary-Value Problems on Complex Geometries
- URL: http://arxiv.org/abs/2004.06490v2
- Date: Thu, 17 Dec 2020 12:21:02 GMT
- Title: PFNN: A Penalty-Free Neural Network Method for Solving a Class of
Second-Order Boundary-Value Problems on Complex Geometries
- Authors: Hailong Sheng and Chao Yang
- Abstract summary: We present PFNN, a penalty-free neural network method, to solve a class of second-order boundary-value problems.
PFNN is superior to several existing approaches in terms of accuracy, flexibility and robustness.
- Score: 4.620110353542715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present PFNN, a penalty-free neural network method, to efficiently solve a
class of second-order boundary-value problems on complex geometries. To reduce
the smoothness requirement, the original problem is reformulated to a weak form
so that the evaluations of high-order derivatives are avoided. Two neural
networks, rather than just one, are employed to construct the approximate
solution, with one network satisfying the essential boundary conditions and the
other handling the rest part of the domain. In this way, an unconstrained
optimization problem, instead of a constrained one, is solved without adding
any penalty terms. The entanglement of the two networks is eliminated with the
help of a length factor function that is scale invariant and can adapt with
complex geometries. We prove the convergence of the PFNN method and conduct
numerical experiments on a series of linear and nonlinear second-order
boundary-value problems to demonstrate that PFNN is superior to several
existing approaches in terms of accuracy, flexibility and robustness.
Related papers
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
We first transform minimax problems into minimax problems using the augmented Lagrangian method.
We then use two (or several) deep neural networks to represent the primal and dual variables respectively.
The parameters in the neural networks are then trained by an adversarial process.
arXiv Detail & Related papers (2024-07-04T05:37:48Z) - Correctness Verification of Neural Networks Approximating Differential
Equations [0.0]
Neural Networks (NNs) approximate the solution of Partial Differential Equations (PDEs)
NNs can become integral parts of simulation software tools which can accelerate the simulation of complex dynamic systems more than 100 times.
This work addresses the verification of these functions by defining the NN derivative as a finite difference approximation.
For the first time, we tackle the problem of bounding an NN function without a priori knowledge of the output domain.
arXiv Detail & Related papers (2024-02-12T12:55:35Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - A multiobjective continuation method to compute the regularization path of deep neural networks [1.3654846342364308]
Sparsity is a highly feature in deep neural networks (DNNs) since it ensures numerical efficiency, improves the interpretability of models, and robustness.
We present an algorithm that allows for the entire sparse front for the above-mentioned objectives in a very efficient manner for high-dimensional gradients with millions of parameters.
We demonstrate that knowledge of the regularization path allows for a well-generalizing network parametrization.
arXiv Detail & Related papers (2023-08-23T10:08:52Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - CENN: Conservative energy method based on neural network with subdomains
for solving heterogeneous problems involving complex geometries [6.782934398825898]
We propose a conservative energy method based on a neural network with (CENN)
The admissible function satisfying the essential boundary condition without boundary penalty is constructed by the radial basis function, particular solution neural network, and general neural network.
We apply the proposed method to some representative examples to demonstrate the ability of the method to model strong discontinuity, singularity, complex boundary, non-linear, and heterogeneous PDE problems.
arXiv Detail & Related papers (2021-09-25T09:52:51Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.