論文の概要: Autonomous Data Selection with Language Models for Mathematical Texts
- arxiv url: http://arxiv.org/abs/2402.07625v3
- Date: Mon, 28 Oct 2024 22:08:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:22.801003
- Title: Autonomous Data Selection with Language Models for Mathematical Texts
- Title(参考訳): 数学的テキストのための言語モデルを用いた自律的データ選択
- Authors: Yifan Zhang, Yifan Luo, Yang Yuan, Andrew Chi-Chih Yao,
- Abstract要約: 自律的なデータ選択に基礎言語モデルを活用する新しい戦略を導入する。
提案手法では,メタプロンプト言語モデルをゼロショット検証器として利用し,高品質な数学的コンテンツを自律的に評価・選択する。
本手法は,最先端のベースラインに比べて,トークンの事前学習効率が2倍に向上したことを示す。
- 参考スコア(独自算出の注目度): 13.789739307267952
- License:
- Abstract: To improve language models' proficiency in mathematical reasoning via continual pretraining, we introduce a novel strategy that leverages base language models for autonomous data selection. Departing from conventional supervised fine-tuning or trained classifiers with human-annotated data, our approach Autonomous Data Selection (AutoDS) utilizes meta-prompted language models as zero-shot verifiers to evaluate and select high-quality mathematical content autonomously. To demonstrate the efficacy of our method, we continuously pretrained a 7B-parameter language model on our curated dataset, achieving substantial improvements in downstream performance on the MATH, GSM8K, and BIG-Bench Hard (BBH) tasks with a token amount reduced by orders of magnitude compared to previous continual pretraining works. Our method showcases a 2 times increase in pretraining token efficiency compared to state-of-the-art baselines, underscoring the potential of our approach in enhancing models' mathematical reasoning capabilities. The AutoMathText dataset is available at https://huggingface.co/datasets/math-ai/AutoMathText. The code is available at https://github.com/yifanzhang-pro/AutoMathText.
- Abstract(参考訳): 連続的事前学習による数学的推論における言語モデルの習熟度を向上させるために,基本言語モデルを自律的データ選択に活用する新たな戦略を導入する。
従来の教師付き微調整・訓練型分類器と人間の注釈付きデータとを分離し,メタプロンプト言語モデルをゼロショット検証器として利用し,高品質な数学的コンテンツを自律的に評価・選択する。
提案手法の有効性を示すため, 提案手法では, 7Bパラメトリ言語モデルをキュレートデータセット上で継続的に事前学習し, MATH, GSM8K, BIG-Bench Hard (BBH) タスクのダウンストリーム性能を, 従来の継続事前学習作業に比べて桁違いに低減したトークン量で大幅に改善した。
提案手法は, モデルの数学的推論能力向上におけるアプローチの可能性について, 最先端のベースラインと比較して, トークンの事前学習効率を2倍に向上させることを示す。
AutoMathTextデータセットはhttps://huggingface.co/datasets/math-ai/AutoMathTextで公開されている。
コードはhttps://github.com/yifanzhang-pro/AutoMathTextで入手できる。
関連論文リスト
- Self-Supervised Representation Learning for Online Handwriting Text
Classification [0.8594140167290099]
本稿では,日本語と中国語の個人によるオンライン筆跡から情報表現を抽出するための事前学習の前提として,新しいストロークマスキング(POSM)を提案する。
抽出した表現の質を評価するために,本質的評価法と外生的評価法の両方を用いる。
事前訓練されたモデルは、作家の識別、性別分類、手書きの分類といったタスクにおいて、最先端の結果を達成するために微調整される。
論文 参考訳(メタデータ) (2023-10-10T14:07:49Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
テキスト生成の困難さによって決定される並べ替え順序でラベルのないデータを活用するために,カリキュラムベースの自己学習(CBST)を提案する。
提案手法は、微調整およびタスク適応型事前学習法より優れており、データ・テキスト・ジェネレーションのわずかな設定で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-06-06T16:11:58Z) - Automatic Short Math Answer Grading via In-context Meta-learning [2.0263791972068628]
本研究では,数学質問に対する児童生徒の回答に対する自動短解格付けの問題について検討する。
我々は、数学的な内容に適応した人気のある言語モデルBERTの変種である MathBERT をベースモデルとして使用しています。
第二に、言語モデルへの入力としてスコアリングサンプルを提供する、コンテキスト内学習アプローチを用いる。
論文 参考訳(メタデータ) (2022-05-30T16:26:02Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
ラベル付きデータにはタスク関連情報が豊富に含まれており、言語モデルの素早い学習に有用であることが証明されている。
本研究では,言語モデルファインチューニングのための自己学習手法を再検討し,最先端のプロンプトベースの少ショット学習者,SFLMを提案する。
論文 参考訳(メタデータ) (2021-10-04T08:51:36Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - Data Augmentation in Natural Language Processing: A Novel Text
Generation Approach for Long and Short Text Classifiers [8.19984844136462]
本稿では,長文と短文の分類器の性能向上に適したテキスト生成手法を提案し,評価する。
シミュレーションされた低データレギュレーションでは、最大15.53%の加算精度ゲインが達成される。
さまざまな種類のデータセットに対するアプローチを成功に導くための意味とパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-26T13:16:07Z) - Learning Better Sentence Representation with Syntax Information [0.0]
構文情報と予め訓練された言語モデルを組み合わせるための新しいアプローチを提案する。
本モデルは91.2%の精度を達成し, 文完成作業では37.8%の精度でベースラインモデルを上回った。
論文 参考訳(メタデータ) (2021-01-09T12:15:08Z) - Syntax-Enhanced Pre-trained Model [49.1659635460369]
BERTやRoBERTaなどの学習済みモデルを強化するために、テキストの構文構造を活用するという問題を研究する。
既存の手法では、事前学習段階または微調整段階のいずれかでテキストの構文を利用しており、両者の区別に苦しむ。
事前学習と微調整の両方の段階でテキストのシンタックスを利用するモデルを提示する。
論文 参考訳(メタデータ) (2020-12-28T06:48:04Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。