Overconfident and Unconfident AI Hinder Human-AI Collaboration
- URL: http://arxiv.org/abs/2402.07632v3
- Date: Wed, 17 Apr 2024 18:37:12 GMT
- Title: Overconfident and Unconfident AI Hinder Human-AI Collaboration
- Authors: Jingshu Li, Yitian Yang, Renwen Zhang, Yi-chieh Lee,
- Abstract summary: This study examines the effects of uncalibrated AI confidence on users' trust in AI, AI advice adoption, and collaboration outcomes.
Deficiency of trust calibration support exacerbates this issue by making it harder to detect uncalibrated confidence.
Our findings highlight the importance of AI confidence calibration for enhancing human-AI collaboration.
- Score: 5.480154202794587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI transparency is a central pillar of responsible AI deployment and effective human-AI collaboration. A critical approach is communicating uncertainty, such as displaying AI's confidence level, or its correctness likelihood (CL), to users. However, these confidence levels are often uncalibrated, either overestimating or underestimating actual CL, posing risks and harms to human-AI collaboration. This study examines the effects of uncalibrated AI confidence on users' trust in AI, AI advice adoption, and collaboration outcomes. We further examined the impact of increased transparency, achieved through trust calibration support, on these outcomes. Our results reveal that uncalibrated AI confidence leads to both the misuse of overconfident AI and disuse of unconfident AI, thereby hindering outcomes of human-AI collaboration. Deficiency of trust calibration support exacerbates this issue by making it harder to detect uncalibrated confidence, promoting misuse and disuse of AI. Conversely, trust calibration support aids in recognizing uncalibration and reducing misuse, but it also fosters distrust and causes disuse of AI. Our findings highlight the importance of AI confidence calibration for enhancing human-AI collaboration and suggest directions for AI design and regulation.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
We review and discuss the intricacies of AI biases, definitions, methods of detection and mitigation, and metrics for evaluating bias.
We also discuss open challenges with regard to the trustworthiness and widespread application of AI across diverse domains of human-centric decision making.
arXiv Detail & Related papers (2024-08-28T06:04:25Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
Modern NLP systems are often uncalibrated, resulting in confidently incorrect predictions that undermine user trust.
We study the evolution of user trust in response to trust-eroding events using a betting game.
arXiv Detail & Related papers (2023-10-20T14:41:46Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
This paper addresses whether the Dunning-Kruger Effect (DKE) can hinder appropriate reliance on AI systems.
DKE is a metacognitive bias due to which less-competent individuals overestimate their own skill and performance.
We found that participants who overestimate their performance tend to exhibit under-reliance on AI systems.
arXiv Detail & Related papers (2023-01-25T14:26:10Z) - Who Should I Trust: AI or Myself? Leveraging Human and AI Correctness
Likelihood to Promote Appropriate Trust in AI-Assisted Decision-Making [36.50604819969994]
In AI-assisted decision-making, it is critical for human decision-makers to know when to trust AI and when to trust themselves.
We modeled humans' CL by approximating their decision-making models and computing their potential performance in similar instances.
We proposed three CL exploitation strategies to calibrate users' trust explicitly/implicitly in the AI-assisted decision-making process.
arXiv Detail & Related papers (2023-01-14T02:51:01Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
We discuss a model of trust inspired by, but not identical to, sociology's interpersonal trust (i.e., trust between people)
We incorporate a formalization of 'contractual trust', such that trust between a user and an AI is trust that some implicit or explicit contract will hold.
We discuss how to design trustworthy AI, how to evaluate whether trust has manifested, and whether it is warranted.
arXiv Detail & Related papers (2020-10-15T03:07:23Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.