論文の概要: Differentially Private Zeroth-Order Methods for Scalable Large Language Model Finetuning
- arxiv url: http://arxiv.org/abs/2402.07818v3
- Date: Wed, 8 May 2024 07:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 16:34:07.226604
- Title: Differentially Private Zeroth-Order Methods for Scalable Large Language Model Finetuning
- Title(参考訳): 拡張性大言語モデルファインタニングのための微分プライベートゼロ階法
- Authors: Z Liu, J Lou, W Bao, Y Hu, B Li, Z Qin, K Ren,
- Abstract要約: プリトレーニング済みLLMのDP微調整は、タスク固有のデータセットのプライバシ保護に広く用いられている。
DP-SGDのスケーラビリティを限界まで押し上げたにもかかわらず、DP-SGDベースの微調整法は残念ながらSGD固有の非効率性によって制限されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning on task-specific datasets is a widely-embraced paradigm of harnessing the powerful capability of pretrained LLMs for various downstream tasks. Due to the popularity of LLMs fine-tuning and its accompanying privacy concerns, differentially private (DP) fine-tuning of pretrained LLMs has been widely used to safeguarding the privacy of task-specific datasets. Lying at the design core of DP LLM fine-tuning methods is the satisfactory tradeoff among privacy, utility, and scalability. Most existing methods build upon the seminal work of DP-SGD. Despite pushing the scalability of DP-SGD to its limit, DP-SGD-based fine-tuning methods are unfortunately limited by the inherent inefficiency of SGD. In this paper, we investigate the potential of DP zeroth-order methods for LLM pretraining, which avoids the scalability bottleneck of SGD by approximating the gradient with the more efficient zeroth-order gradient. Rather than treating the zeroth-order method as a drop-in replacement for SGD, this paper presents a comprehensive study both theoretically and empirically. First, we propose the stagewise DP zeroth-order method (DP-ZOSO) that dynamically schedules key hyperparameters. This design is grounded on the synergy between DP random perturbation and the gradient approximation error of the zeroth-order method, and its effect on fine-tuning trajectory. We provide theoretical analysis for both proposed methods. We conduct extensive empirical analysis on both encoder-only masked language model and decoder-only autoregressive language model, achieving impressive results in terms of scalability and utility (compared with DPZero, DP-ZOPO improves 4.5% on SST-5, 5.5% on MNLI with RoBERTa-Large and 9.2% on CB, 3.9% on BoolQ with OPT-2.7B when $\epsilon=4$).
- Abstract(参考訳): タスク固有のデータセットの微調整は、様々な下流タスクに事前学習されたLLMの強力な能力を活用する、広く採用されているパラダイムである。
LLMの微調整とそれに伴うプライバシー問題により、事前訓練されたLCMの差分プライベート(DP)微調整はタスク固有のデータセットのプライバシーを保護するために広く利用されている。
DP LLMファインチューニングメソッドの設計コアに注目することは、プライバシ、ユーティリティ、スケーラビリティのトレードオフとして十分である。
既存の手法のほとんどはDP-SGDの精巧な研究に基づいている。
DP-SGDのスケーラビリティを限界まで押し上げたにもかかわらず、DP-SGDベースの微調整法は残念ながらSGD固有の非効率性によって制限されている。
本稿では,より効率的なゼロ階勾配で勾配を近似することにより,SGDのスケーラビリティボトルネックを回避する,LCM事前学習のためのDPゼロ階法の可能性について検討する。
本稿では, ゼロオーダー法をSGDのドロップイン置換として扱うのではなく, 理論的, 実験的に総合的研究を行う。
まず,鍵ハイパーパラメータを動的にスケジュールするDP-ZOSO法を提案する。
この設計は、DPランダム摂動とゼロ次法の勾配近似誤差の相乗効果と、その微調整軌道への影響に基づく。
提案手法の理論的解析を行う。
我々はエンコーダのみのマスク付き言語モデルとデコーダのみの自己回帰型言語モデルの両方について広範な実証分析を行い、スケーラビリティと実用性(DPZeroと比較すると、DP-ZOPOはSST-5で4.5%、RoBERTa-LargeでMNLIで5.5%、CBで9.2%、OCT-2.7Bで3.9%、OPT-2.7Bで3.9%)で素晴らしい結果を得た。
関連論文リスト
- LMO-DP: Optimizing the Randomization Mechanism for Differentially Private Fine-Tuning (Large) Language Models [31.718398512438238]
本稿では,LMO-DP(Language Model-based Optimal Differential Privacy)機構を提案する。
これは、最適化された言語モデルの厳密な構成を、サブ最適DPメカニズムで実現するための第一歩である。
LMO-DPはまた、強力な差分プライバシー保証を持つLlama-2を正確に微調整する最初のソリューションでもある。
論文 参考訳(メタデータ) (2024-05-29T05:32:50Z) - Improved Communication-Privacy Trade-offs in $L_2$ Mean Estimation under Streaming Differential Privacy [47.997934291881414]
既存の平均推定スキームは、通常、$L_infty$幾何に最適化され、ランダムな回転や、$L$幾何に適応するカシンの表現に依存する。
本稿では,スパシフィケーションに固有のランダム性をDPに組み込んだ,スパシフィケーションガウシアン機構の新たなプライバシ会計手法を提案する。
従来の手法とは異なり、我々の会計アルゴリズムは直接$L$幾何で動作し、ガウスの機構に迅速に収束するMSEが得られる。
論文 参考訳(メタデータ) (2024-05-02T03:48:47Z) - Private Fine-tuning of Large Language Models with Zeroth-order
Optimization [54.24600476755372]
DP-ZO(DP-ZO)は、ゼロオーダー最適化を民営化し、トレーニングデータのプライバシを保存する、大規模言語モデルを微調整する新しい手法である。
DP-ZOは、SQuADから1000のトレーニングサンプルにOPT-66Bを微調整すると、プライバシが1,10-5)$-DPになるため、わずか1.86%のパフォーマンス低下を示す。
論文 参考訳(メタデータ) (2024-01-09T03:53:59Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) を使用して、差分プライバシ(DP)がモデルパフォーマンス劣化の犠牲となることを保証する。
DPSGD-GCに代わる新しいエラーフィードバック(EF)DPアルゴリズムを提案する。
提案アルゴリズムに対するアルゴリズム固有のDP解析を確立し,R'enyi DPに基づくプライバシ保証を提供する。
論文 参考訳(メタデータ) (2023-11-24T17:56:44Z) - DPIS: An Enhanced Mechanism for Differentially Private SGD with
Importance Sampling [19.59757201902467]
ディファレンシャルプライバシ(DP)は、プライバシ保護の十分に受け入れられた標準となり、ディープニューラルネットワーク(DNN)は、機械学習において非常に成功した。
この目的のための古典的なメカニズムはDP-SGDであり、これは訓練に一般的に使用される勾配降下(SGD)の微分プライベートバージョンである。
DPISは,DP-SGDのコアのドロップイン代替として使用できる,微分プライベートなSGDトレーニングのための新しいメカニズムである。
論文 参考訳(メタデータ) (2022-10-18T07:03:14Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGDとDP-NSGDは、センシティブなトレーニングデータを記憶する大規模モデルのリスクを軽減する。
DP-NSGD は DP-SGD よりも比較的チューニングが比較的容易であるのに対して,これらの2つのアルゴリズムは同様の精度を実現する。
論文 参考訳(メタデータ) (2022-06-27T03:45:02Z) - Automatic Clipping: Differentially Private Deep Learning Made Easier and
Stronger [39.93710312222771]
サンプルごとのクリッピングは、ディープラーニングモデルのための実用的な差分プライベート(DP)トレーニングを可能にするアルゴリズムの重要なステップである。
本稿では,任意のDPに対してRをチューニングする必要がなくなる自動クリッピング(automatic clipping)という,使い勝手の良い代替手法を提案する。
論文 参考訳(メタデータ) (2022-06-14T19:49:44Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy(DP)は、個別のサンプルレベルのプライバシで機械学習モデルをトレーニングするための正式なフレームワークを提供する。
DP-SGDを用いたプライベートトレーニングは、個々のサンプル勾配にノイズを注入することで漏れを防ぐ。
この結果は非常に魅力的であるが,DP-SGDを用いた大規模モデルのトレーニングの計算コストは,非プライベートトレーニングよりもかなり高い。
論文 参考訳(メタデータ) (2022-05-06T01:22:20Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private(DP)学習は、テキストの大規模なディープラーニングモデルを構築する上で、限られた成功を収めている。
この性能低下は,大規模な事前学習モデルを用いることで緩和可能であることを示す。
本稿では,DP-SGDにおけるクリッピングを,サンプルごとの勾配をインスタンス化せずに実行可能にするメモリ節約手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T01:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。