Walia-LLM: Enhancing Amharic-LLaMA by Integrating Task-Specific and Generative Datasets
- URL: http://arxiv.org/abs/2402.08015v5
- Date: Mon, 29 Apr 2024 07:14:51 GMT
- Title: Walia-LLM: Enhancing Amharic-LLaMA by Integrating Task-Specific and Generative Datasets
- Authors: Israel Abebe Azime, Atnafu Lambebo Tonja, Tadesse Destaw Belay, Mitiku Yohannes Fuge, Aman Kassahun Wassie, Eyasu Shiferaw Jada, Yonas Chanie, Walelign Tewabe Sewunetie, Seid Muhie Yimam,
- Abstract summary: We focus on enhancing the LLaMA-2-Amharic model by integrating task-specific and generative datasets.
We compile an Amharic instruction fine-tuning dataset and fine-tuned LLaMA-2-Amharic model.
The fine-tuned model shows promising results in different NLP tasks.
- Score: 2.8123257987021058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have received a lot of attention in natural language processing (NLP) research because of their exceptional performance in understanding and generating human languages. However, low-resource languages are left behind due to the unavailability of resources. In this work, we focus on enhancing the LLaMA-2-Amharic model by integrating task-specific and generative datasets to improve language model performance for Amharic. We compile an Amharic instruction fine-tuning dataset and fine-tuned LLaMA-2-Amharic model. The fine-tuned model shows promising results in different NLP tasks. We open-source our dataset creation pipeline, instruction datasets, trained models, and evaluation outputs to promote language-specific studies on these models.
Related papers
- Atlas-Chat: Adapting Large Language Models for Low-Resource Moroccan Arabic Dialect [45.755756115243486]
We introduce Atlas-Chat, the first-ever collection of large language models specifically developed for dialectal Arabic.
We construct our instruction dataset by consolidating existing Darija language resources, creating novel datasets both manually and synthetically.
Atlas-Chat-9B and 2B models, fine-tuned on the dataset, exhibit superior ability in following Darija instructions and performing standard NLP tasks.
arXiv Detail & Related papers (2024-09-26T14:56:38Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning [0.0]
We introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content.
We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality.
Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks.
arXiv Detail & Related papers (2024-07-02T10:43:49Z) - Amharic LLaMA and LLaVA: Multimodal LLMs for Low Resource Languages [0.0]
Large Language Models (LLMs) have shown incredible proficiency at natural language processing tasks.
LLMs often struggle to perform well on low-resource languages because there is so little training data available.
In this work, we explore training LLaMA-2 to speak Amharic, a language which is spoken by over 50 million people world wide.
arXiv Detail & Related papers (2024-03-11T01:04:36Z) - YAYI 2: Multilingual Open-Source Large Language Models [53.92832054643197]
We propose YAYI 2, including both base and chat models, with 30 billion parameters.
YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline.
The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback.
arXiv Detail & Related papers (2023-12-22T17:34:47Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - MEGA: Multilingual Evaluation of Generative AI [23.109803506475174]
Generative AI models have shown impressive performance on many Natural Language Processing tasks.
Most studies on generative LLMs have been restricted to English.
It is unclear how capable these models are at understanding and generating text in other languages.
arXiv Detail & Related papers (2023-03-22T13:03:10Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.