YAYI 2: Multilingual Open-Source Large Language Models
- URL: http://arxiv.org/abs/2312.14862v1
- Date: Fri, 22 Dec 2023 17:34:47 GMT
- Title: YAYI 2: Multilingual Open-Source Large Language Models
- Authors: Yin Luo, Qingchao Kong, Nan Xu, Jia Cao, Bao Hao, Baoyu Qu, Bo Chen,
Chao Zhu, Chenyang Zhao, Donglei Zhang, Fan Feng, Feifei Zhao, Hailong Sun,
Hanxuan Yang, Haojun Pan, Hongyu Liu, Jianbin Guo, Jiangtao Du, Jingyi Wang,
Junfeng Li, Lei Sun, Liduo Liu, Lifeng Dong, Lili Liu, Lin Wang, Liwen Zhang,
Minzheng Wang, Pin Wang, Ping Yu, Qingxiao Li, Rui Yan, Rui Zou, Ruiqun Li,
Taiwen Huang, Xiaodong Wang, Xiaofei Wu, Xin Peng, Xina Zhang, Xing Fang,
Xinglin Xiao, Yanni Hao, Yao Dong, Yigang Wang, Ying Liu, Yongyu Jiang,
Yungan Wang, Yuqi Wang, Zhangsheng Wang, Zhaoxin Yu, Zhen Luo, Wenji Mao, Lei
Wang, Dajun Zeng
- Abstract summary: We propose YAYI 2, including both base and chat models, with 30 billion parameters.
YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline.
The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback.
- Score: 53.92832054643197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the latest advancements in natural language processing, large language
models (LLMs) have achieved human-level language understanding and generation
abilities in many real-world tasks, and even have been regarded as a potential
path to the artificial general intelligence. To better facilitate research on
LLMs, many open-source LLMs, such as Llama 2 and Falcon, have recently been
proposed and gained comparable performances to proprietary models. However,
these models are primarily designed for English scenarios and exhibit poor
performances in Chinese contexts. In this technical report, we propose YAYI 2,
including both base and chat models, with 30 billion parameters. YAYI 2 is
pre-trained from scratch on a multilingual corpus which contains 2.65 trillion
tokens filtered by our pre-training data processing pipeline. The base model is
aligned with human values through supervised fine-tuning with millions of
instructions and reinforcement learning from human feedback. Extensive
experiments on multiple benchmarks, such as MMLU and CMMLU, consistently
demonstrate that the proposed YAYI 2 outperforms other similar sized
open-source models.
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - Large Concept Models: Language Modeling in a Sentence Representation Space [62.73366944266477]
We present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept.
Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow.
We show that our model exhibits impressive zero-shot generalization performance to many languages.
arXiv Detail & Related papers (2024-12-11T23:36:20Z) - Language Portability Strategies for Open-domain Dialogue with Pre-trained Language Models from High to Low Resource Languages [1.7436854281619139]
We propose a study of linguistic portability strategies of large pre-trained language models (PLMs) used for open-domain dialogue systems.
In particular the target low-resource language (L_T) will be simulated with French, as it lacks of task-specific resources.
arXiv Detail & Related papers (2024-07-01T14:20:54Z) - Open Generative Large Language Models for Galician [1.3049334790726996]
Large language models (LLMs) have transformed natural language processing.
Yet, their predominantly English-centric training has led to biases and performance disparities across languages.
This imbalance marginalizes minoritized languages, making equitable access to NLP technologies more difficult for languages with lower resources, such as Galician.
We present the first two generative LLMs focused on Galician to bridge this gap.
arXiv Detail & Related papers (2024-06-19T23:49:56Z) - Tele-FLM Technical Report [96.19923831660266]
We introduce Tele-FLM (aka FLM-2), a 52B open-sourced multilingual large language model.
It features a stable, efficient pre-training paradigm and enhanced factual judgment capabilities.
It is comparable to strong open-sourced models that involve larger pre-training FLOPs, such as Llama2-70B and DeepSeek-67B.
arXiv Detail & Related papers (2024-04-25T14:34:47Z) - Walia-LLM: Enhancing Amharic-LLaMA by Integrating Task-Specific and Generative Datasets [2.8123257987021058]
We focus on enhancing the LLaMA-2-Amharic model by integrating task-specific and generative datasets.
We compile an Amharic instruction fine-tuning dataset and fine-tuned LLaMA-2-Amharic model.
The fine-tuned model shows promising results in different NLP tasks.
arXiv Detail & Related papers (2024-02-12T19:25:11Z) - Baichuan 2: Open Large-scale Language Models [51.56361715162972]
We present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens.
Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval.
arXiv Detail & Related papers (2023-09-19T04:13:22Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.