Nearest Neighbour Score Estimators for Diffusion Generative Models
- URL: http://arxiv.org/abs/2402.08018v2
- Date: Tue, 16 Jul 2024 20:37:10 GMT
- Title: Nearest Neighbour Score Estimators for Diffusion Generative Models
- Authors: Matthew Niedoba, Dylan Green, Saeid Naderiparizi, Vasileios Lioutas, Jonathan Wilder Lavington, Xiaoxuan Liang, Yunpeng Liu, Ke Zhang, Setareh Dabiri, Adam Ĺcibior, Berend Zwartsenberg, Frank Wood,
- Abstract summary: We introduce a novel nearest neighbour score function estimator which utilizes multiple samples from the training set to dramatically decrease estimator variance.
In diffusion models, we show that our estimator can replace a learned network for probability-flow ODE integration, opening promising new avenues of future research.
- Score: 16.189734871742743
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Score function estimation is the cornerstone of both training and sampling from diffusion generative models. Despite this fact, the most commonly used estimators are either biased neural network approximations or high variance Monte Carlo estimators based on the conditional score. We introduce a novel nearest neighbour score function estimator which utilizes multiple samples from the training set to dramatically decrease estimator variance. We leverage our low variance estimator in two compelling applications. Training consistency models with our estimator, we report a significant increase in both convergence speed and sample quality. In diffusion models, we show that our estimator can replace a learned network for probability-flow ODE integration, opening promising new avenues of future research.
Related papers
- Dimension-free Score Matching and Time Bootstrapping for Diffusion Models [11.743167854433306]
Diffusion models generate samples by estimating the score function of the target distribution at various noise levels.
In this work, we establish the first (nearly) dimension-free sample bounds complexity for learning these score functions.
A key aspect of our analysis is the use of a single function approximator to jointly estimate scores across noise levels.
arXiv Detail & Related papers (2025-02-14T18:32:22Z) - Generative Modeling with Bayesian Sample Inference [50.07758840675341]
We derive a novel generative model from the simple act of Gaussian posterior inference.
Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability.
Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief.
arXiv Detail & Related papers (2025-02-11T14:27:10Z) - The Unreasonable Effectiveness of Gaussian Score Approximation for Diffusion Models and its Applications [1.8416014644193066]
We compare learned neural scores to the scores of two kinds of analytically tractable distributions.
We claim that the learned neural score is dominated by its linear (Gaussian) approximation for moderate to high noise scales.
We show that this allows the skipping of the first 15-30% of sampling steps while maintaining high sample quality.
arXiv Detail & Related papers (2024-12-12T21:31:27Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - A Statistical Model for Predicting Generalization in Few-Shot
Classification [6.158812834002346]
We introduce a Gaussian model of the feature distribution to predict the generalization error.
We show that our approach outperforms alternatives such as the leave-one-out cross-validation strategy.
arXiv Detail & Related papers (2022-12-13T10:21:15Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
Estimating mutual information between continuous random variables is often intractable and challenging for high-dimensional data.
Recent progress has leveraged neural networks to optimize variational lower bounds on mutual information.
Our approach is based on training a classifier that provides the probability that a data sample pair is drawn from the joint distribution.
arXiv Detail & Related papers (2020-10-05T04:19:27Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.