Multi-Attribute Vision Transformers are Efficient and Robust Learners
- URL: http://arxiv.org/abs/2402.08070v2
- Date: Fri, 19 Jul 2024 16:51:02 GMT
- Title: Multi-Attribute Vision Transformers are Efficient and Robust Learners
- Authors: Hanan Gani, Nada Saadi, Noor Hussein, Karthik Nandakumar,
- Abstract summary: Vision Transformers (ViTs) have emerged as a compelling alternative to Convolutional Neural Networks (CNNs)
We present a straightforward yet effective strategy for training various attributes through a single ViT network as distinct tasks.
We assess the resilience of multi-attribute ViTs against adversarial attacks and compare their performance against ViTs designed for single attributes.
- Score: 4.53923275658276
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Since their inception, Vision Transformers (ViTs) have emerged as a compelling alternative to Convolutional Neural Networks (CNNs) across a wide spectrum of tasks. ViTs exhibit notable characteristics, including global attention, resilience against occlusions, and adaptability to distribution shifts. One underexplored aspect of ViTs is their potential for multi-attribute learning, referring to their ability to simultaneously grasp multiple attribute-related tasks. In this paper, we delve into the multi-attribute learning capability of ViTs, presenting a straightforward yet effective strategy for training various attributes through a single ViT network as distinct tasks. We assess the resilience of multi-attribute ViTs against adversarial attacks and compare their performance against ViTs designed for single attributes. Moreover, we further evaluate the robustness of multi-attribute ViTs against a recent transformer based attack called Patch-Fool. Our empirical findings on the CelebA dataset provide validation for our assertion. Our code is available at https://github.com/hananshafi/MTL-ViT
Related papers
- When Adversarial Training Meets Vision Transformers: Recipes from
Training to Architecture [32.260596998171835]
Adrial training is still required for ViTs to defend against such adversarial attacks.
We find that pre-training and SGD are necessary for ViTs' adversarial training.
Our code is available at https://versa.com/mo666666/When-Adrial-Training-Meets-Vision-Transformers.
arXiv Detail & Related papers (2022-10-14T05:37:20Z) - SERE: Exploring Feature Self-relation for Self-supervised Transformer [79.5769147071757]
Vision transformers (ViT) have strong representation ability with spatial self-attention and channel-level feedforward networks.
Recent works reveal that self-supervised learning helps unleash the great potential of ViT.
We observe that relational modeling on spatial and channel dimensions distinguishes ViT from other networks.
arXiv Detail & Related papers (2022-06-10T15:25:00Z) - Self-Promoted Supervision for Few-Shot Transformer [178.52948452353834]
Self-promoted sUpervisioN (SUN) is a few-shot learning framework for vision transformers (ViTs)
SUN pretrains the ViT on the few-shot learning dataset and then uses it to generate individual location-specific supervision for guiding each patch token.
Experiments show that SUN using ViTs significantly surpasses other few-shot learning frameworks with ViTs and is the first one that achieves higher performance than those CNN state-of-the-arts.
arXiv Detail & Related papers (2022-03-14T12:53:27Z) - Self-slimmed Vision Transformer [52.67243496139175]
Vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks.
We propose a generic self-slimmed learning approach for vanilla ViTs, namely SiT.
Specifically, we first design a novel Token Slimming Module (TSM), which can boost the inference efficiency of ViTs.
arXiv Detail & Related papers (2021-11-24T16:48:57Z) - On Improving Adversarial Transferability of Vision Transformers [97.17154635766578]
Vision transformers (ViTs) process input images as sequences of patches via self-attention.
We study the adversarial feature space of ViT models and their transferability.
We introduce two novel strategies specific to the architecture of ViT models.
arXiv Detail & Related papers (2021-06-08T08:20:38Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - On the Adversarial Robustness of Visual Transformers [129.29523847765952]
This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations.
Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-03-29T14:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.