zk-IoT: Securing the Internet of Things with Zero-Knowledge Proofs on Blockchain Platforms
- URL: http://arxiv.org/abs/2402.08322v2
- Date: Mon, 19 Feb 2024 05:41:36 GMT
- Title: zk-IoT: Securing the Internet of Things with Zero-Knowledge Proofs on Blockchain Platforms
- Authors: Gholamreza Ramezan, Ehsan Meamari,
- Abstract summary: This paper introduces the zk-IoT framework, a novel approach to enhancing the security of Internet of Things (IoT) ecosystems.
Our framework ensures the integrity of firmware execution and data processing in potentially compromised IoT devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces the zk-IoT framework, a novel approach to enhancing the security of Internet of Things (IoT) ecosystems through the use of Zero-Knowledge Proofs (ZKPs) on blockchain platforms. Our framework ensures the integrity of firmware execution and data processing in potentially compromised IoT devices. By leveraging the concept of ZKP, we establish a trust layer that facilitates secure, autonomous communication between IoT devices in environments where devices may not inherently trust each other. The framework includes zk-Devices, which utilize functional commitment to generate proofs for executed programs, and service contracts for encoding interaction logic among devices. It also utilizes a blockchain layer and a relayer as a ZKP storage and data communication protocol, respectively. Our experiments demonstrate that proof generation, reading, and verification take approximately 694, 5078, and 19 milliseconds in our system setup, respectively. These timings meet the practical requirements for IoT device communication, demonstrating the feasibility and efficiency of our solution. The zk-IoT framework represents a significant advancement in the realm of IoT security, paving the way for reliable and scalable IoT networks across various applications, such as smart city infrastructures, healthcare systems, and industrial automation.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
Next-generation networks aim for comprehensive connectivity, interconnecting humans, machines, devices, and systems seamlessly.
To address this challenge, the Zero Trust (ZT) paradigm emerges as a key method for safeguarding network integrity and data confidentiality.
This work introduces EPS-CNN, a novel deep-learning-based wireless device identification framework.
arXiv Detail & Related papers (2024-02-08T00:23:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Lightweight and Secure PUF-Based Authentication and Key-exchange Protocol for IoT Devices [0.0]
Device Authentication and Key exchange are major challenges for the Internet of Things.
PUF appears to offer a practical and economical security mechanism in place of typically sophisticated cryptosystems like PKI and IBE.
We present a system in which the IoT device does not require a continuous active internet connection to communicate with the server in order to Authenticate itself.
arXiv Detail & Related papers (2023-11-07T15:42:14Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
We present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes.
SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices.
We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud.
arXiv Detail & Related papers (2023-09-26T08:11:38Z) - Technical Report-IoT Devices Proximity Authentication In Ad Hoc Network
Environment [0.0]
Internet of Things (IoT) is a distributed communication technology system that offers the possibility for physical devices to connect and exchange data.
authentication to the IoT devices is essential as it is the first step in preventing any negative impact of possible attackers.
This paper implements an IoT devices authentication scheme based on something that is in the IoT devices environment.
arXiv Detail & Related papers (2022-10-01T03:07:42Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
arXiv Detail & Related papers (2020-02-25T12:24:49Z) - Blockchain-based Smart-IoT Trust Zone Measurement Architecture [1.5749416770494706]
Internet of Things (IoT) has gained a tremendous attention and become a central aspect of our environment.
In this paper, we propose a behavior monitor in IoT- setup which can provide trust-confidence to outside networks.
In addition, we also incorporate Trusted Execution Technology (Intel SGX) in order to provide a secure execution environment for applications and data on blockchain.
arXiv Detail & Related papers (2020-01-08T03:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.