IoT Device Identification Using Deep Learning
- URL: http://arxiv.org/abs/2002.11686v1
- Date: Tue, 25 Feb 2020 12:24:49 GMT
- Title: IoT Device Identification Using Deep Learning
- Authors: Jaidip Kotak and Yuval Elovici
- Abstract summary: The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
- Score: 43.0717346071013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing use of IoT devices in organizations has increased the number of
attack vectors available to attackers due to the less secure nature of the
devices. The widely adopted bring your own device (BYOD) policy which allows an
employee to bring any IoT device into the workplace and attach it to an
organization's network also increases the risk of attacks. In order to address
this threat, organizations often implement security policies in which only the
connection of white-listed IoT devices is permitted. To monitor adherence to
such policies and protect their networks, organizations must be able to
identify the IoT devices connected to their networks and, more specifically, to
identify connected IoT devices that are not on the white-list (unknown
devices). In this study, we applied deep learning on network traffic to
automatically identify IoT devices connected to the network. In contrast to
previous work, our approach does not require that complex feature engineering
be applied on the network traffic, since we represent the communication
behavior of IoT devices using small images built from the IoT devices network
traffic payloads. In our experiments, we trained a multiclass classifier on a
publicly available dataset, successfully identifying 10 different IoT devices
and the traffic of smartphones and computers, with over 99% accuracy. We also
trained multiclass classifiers to detect unauthorized IoT devices connected to
the network, achieving over 99% overall average detection accuracy.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - IoT Device Identification Based on Network Communication Analysis Using
Deep Learning [43.0717346071013]
The risk of attacks on an organization's network has increased due to the growing use of less secure IoT devices.
To tackle this threat and protect their networks, organizations generally implement security policies in which only white listed IoT devices are allowed on the network.
In this research, deep learning is applied to network communication for the automated identification of IoT devices permitted on the network.
arXiv Detail & Related papers (2023-03-02T13:44:58Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Technical Report-IoT Devices Proximity Authentication In Ad Hoc Network
Environment [0.0]
Internet of Things (IoT) is a distributed communication technology system that offers the possibility for physical devices to connect and exchange data.
authentication to the IoT devices is essential as it is the first step in preventing any negative impact of possible attackers.
This paper implements an IoT devices authentication scheme based on something that is in the IoT devices environment.
arXiv Detail & Related papers (2022-10-01T03:07:42Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
The security aspect of IoT devices is an infant field, which is why it is our focus in this paper.
We developed a system that can recognize malicious behavior of a specific IoT node on the network.
Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network.
arXiv Detail & Related papers (2020-10-13T10:56:33Z) - Zero-Bias Deep Learning for Accurate Identification of Internet of
Things (IoT) Devices [20.449229983283736]
We propose an enhanced deep learning framework for IoT device identification using physical layer signals.
We have evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation.
arXiv Detail & Related papers (2020-08-27T20:50:48Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
arXiv Detail & Related papers (2020-01-28T23:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.