Learning to Produce Semi-dense Correspondences for Visual Localization
- URL: http://arxiv.org/abs/2402.08359v2
- Date: Wed, 20 Mar 2024 07:05:55 GMT
- Title: Learning to Produce Semi-dense Correspondences for Visual Localization
- Authors: Khang Truong Giang, Soohwan Song, Sungho Jo,
- Abstract summary: This study addresses the challenge of performing visual localization in demanding conditions such as night-time scenarios, adverse weather, and seasonal changes.
We propose a novel method that extracts reliable semi-dense 2D-3D matching points based on dense keypoint matches.
The network utilizes both geometric and visual cues to effectively infer 3D coordinates for unobserved keypoints from the observed ones.
- Score: 11.415451542216559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study addresses the challenge of performing visual localization in demanding conditions such as night-time scenarios, adverse weather, and seasonal changes. While many prior studies have focused on improving image-matching performance to facilitate reliable dense keypoint matching between images, existing methods often heavily rely on predefined feature points on a reconstructed 3D model. Consequently, they tend to overlook unobserved keypoints during the matching process. Therefore, dense keypoint matches are not fully exploited, leading to a notable reduction in accuracy, particularly in noisy scenes. To tackle this issue, we propose a novel localization method that extracts reliable semi-dense 2D-3D matching points based on dense keypoint matches. This approach involves regressing semi-dense 2D keypoints into 3D scene coordinates using a point inference network. The network utilizes both geometric and visual cues to effectively infer 3D coordinates for unobserved keypoints from the observed ones. The abundance of matching information significantly enhances the accuracy of camera pose estimation, even in scenarios involving noisy or sparse 3D models. Comprehensive evaluations demonstrate that the proposed method outperforms other methods in challenging scenes and achieves competitive results in large-scale visual localization benchmarks. The code will be available.
Related papers
- FocusTune: Tuning Visual Localization through Focus-Guided Sampling [61.79440120153917]
FocusTune is a focus-guided sampling technique to improve the performance of visual localization algorithms.
We demonstrate that FocusTune both improves or matches state-of-the-art performance whilst keeping ACE's appealing low storage and compute requirements.
This combination of high performance and low compute and storage requirements is particularly promising for applications in areas like mobile robotics and augmented reality.
arXiv Detail & Related papers (2023-11-06T04:58:47Z) - EP2P-Loc: End-to-End 3D Point to 2D Pixel Localization for Large-Scale
Visual Localization [44.05930316729542]
We propose EP2P-Loc, a novel large-scale visual localization method for 3D point clouds.
To increase the number of inliers, we propose a simple algorithm to remove invisible 3D points in the image.
For the first time in this task, we employ a differentiable for end-to-end training.
arXiv Detail & Related papers (2023-09-14T07:06:36Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
Learnable matchers often underperform when there exists only small regions of co-visibility between image pairs.
We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks.
We show that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs.
arXiv Detail & Related papers (2023-03-22T17:46:27Z) - Improving Feature-based Visual Localization by Geometry-Aided Matching [21.1967752160412]
We introduce a novel 2D-3D matching method, Geometry-Aided Matching (GAM), which uses both appearance information and geometric context to improve 2D-3D feature matching.
GAM can greatly strengthen the recall of 2D-3D matches while maintaining high precision.
Our proposed localization method achieves state-of-the-art results on multiple visual localization datasets.
arXiv Detail & Related papers (2022-11-16T07:02:12Z) - SNAKE: Shape-aware Neural 3D Keypoint Field [62.91169625183118]
Detecting 3D keypoints from point clouds is important for shape reconstruction.
This work investigates the dual question: can shape reconstruction benefit 3D keypoint detection?
We propose a novel unsupervised paradigm named SNAKE, which is short for shape-aware neural 3D keypoint field.
arXiv Detail & Related papers (2022-06-03T17:58:43Z) - Soft Expectation and Deep Maximization for Image Feature Detection [68.8204255655161]
We propose SEDM, an iterative semi-supervised learning process that flips the question and first looks for repeatable 3D points, then trains a detector to localize them in image space.
Our results show that this new model trained using SEDM is able to better localize the underlying 3D points in a scene.
arXiv Detail & Related papers (2021-04-21T00:35:32Z) - P2-Net: Joint Description and Detection of Local Features for Pixel and
Point Matching [78.18641868402901]
This work takes the initiative to establish fine-grained correspondences between 2D images and 3D point clouds.
An ultra-wide reception mechanism in combination with a novel loss function are designed to mitigate the intrinsic information variations between pixel and point local regions.
arXiv Detail & Related papers (2021-03-01T14:59:40Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
We leverage a 3D fully convolutional network for 3D point clouds.
We propose a novel and practical learning mechanism that densely predicts both a detection score and a description feature for each 3D point.
Our method achieves state-of-the-art results in both indoor and outdoor scenarios.
arXiv Detail & Related papers (2020-03-06T12:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.