論文の概要: Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing
- arxiv url: http://arxiv.org/abs/2402.08400v2
- Date: Mon, 3 Jun 2024 23:02:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 12:58:06.405942
- Title: Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing
- Title(参考訳): ランダム化平滑化を用いたセグメンテーションのための適応的階層的認証
- Authors: Alaa Anani, Tobias Lorenz, Bernt Schiele, Mario Fritz,
- Abstract要約: 機械学習の認証は、特定の条件下では、敵対的なサンプルが特定の範囲内でモデルを回避できないことを証明している。
セグメンテーションの一般的な認証方法は、平らな粒度のクラスを使い、モデルの不確実性による高い断続率をもたらす。
本稿では,複数レベルの階層内で画素を認証し,不安定なコンポーネントに対して粗いレベルに適応的に認証を緩和する,新しい,より実用的な設定を提案する。
- 参考スコア(独自算出の注目度): 87.48628403354351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions, a necessity for safety-critical domains. Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty across many classes. We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components classic methods would abstain from, effectively lowering the abstain rate whilst providing more certified semantically meaningful information. We mathematically formulate the problem setup, introduce an adaptive hierarchical certification algorithm and prove the correctness of its guarantees. Since certified accuracy does not take the loss of information into account for coarser classes, we introduce the Certified Information Gain ($\mathrm{CIG}$) metric, which is proportional to the class granularity level. Our extensive experiments on the datasets Cityscapes, PASCAL-Context, ACDC and COCO-Stuff demonstrate that our adaptive algorithm achieves a higher $\mathrm{CIG}$ and lower abstain rate compared to the current state-of-the-art certification method. Our code can be found here: https://github.com/AlaaAnani/adaptive-certify.
- Abstract(参考訳): 機械学習の認証は、特定の条件下でモデルを回避する敵のサンプルが存在しないことを証明している。
セグメンテーションの一般的な認証方法は、平らな粒度のクラスを使い、多くのクラスでモデルの不確実性のために高い断続率をもたらす。
本稿では,複数レベルの階層内の画素を認証し,不安定なコンポーネントに対する粗いレベルの認証を適応的に緩和する,より実用的な設定を提案する。
問題設定を数学的に定式化し、適応的階層的認証アルゴリズムを導入し、その保証の正確性を証明する。
認証精度は、粗いクラスを考慮した情報損失を考慮しないので、クラス粒度レベルに比例した認証情報ゲイン(\mathrm{CIG}$)メトリクスを導入する。
Cityscapes, PASCAL-Context, ACDC, COCO-Stuffのデータセットに関する広範な実験により、我々の適応アルゴリズムは、現在の最先端認証法と比較して、より高い$\mathrm{CIG}$と低い吸収率を達成することを示した。
私たちのコードは、https://github.com/AlaaAnani/adaptive-certify.comで参照できます。
関連論文リスト
- Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness [21.394217131341932]
本稿では,対向ロバスト性の証明を可能にする新しい認証アダプタフレームワーク(CAF)を提案する。
CAFは、ランダムまたは復号化スムーシングに基づく手法と比較して、認証精度の向上を実現している。
アダプタのアンサンブルにより、1つの事前訓練された特徴抽出器は、様々なノイズ摂動スケールに対して防御することができる。
論文 参考訳(メタデータ) (2024-05-25T03:18:52Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
分類学的オープンセット(TOS)設定では、ほとんどショット適応法はうまくいきません。
本稿では,モデル予測の階層的一貫性を校正する即時チューニング手法を提案する。
次に,階層整合性のための新しいPrompt Tuning(ProTeCt)手法を提案し,ラベル集合の粒度を分類する。
論文 参考訳(メタデータ) (2023-06-04T02:55:25Z) - Certified Interpretability Robustness for Class Activation Mapping [77.58769591550225]
本稿では,解釈可能性マップのためのCORGI(Certifiable prOvable Robustness Guarantees)を提案する。
CORGIは入力画像を取り込み、そのCAM解釈可能性マップのロバスト性に対する証明可能な下限を与えるアルゴリズムである。
交通標識データを用いたケーススタディによるCORGIの有効性を示す。
論文 参考訳(メタデータ) (2023-01-26T18:58:11Z) - Double Bubble, Toil and Trouble: Enhancing Certified Robustness through
Transitivity [27.04033198073254]
ニューラルネットワークモデルの分類を反転させる微妙な敵の例に反応して、最近の研究は、ソリューションとして証明された堅牢性を促進している。
我々は,今日の"最適"証明書が,認証の推移性と入力空間の幾何学の両方を活用することで,どのように改善できるかを示す。
また, 得られた認定半径の4ドルパーセンテージを均一に増加させることにより, さらに有望な結果が得られた。
論文 参考訳(メタデータ) (2022-10-12T10:42:21Z) - Towards Evading the Limits of Randomized Smoothing: A Theoretical
Analysis [74.85187027051879]
決定境界を複数の雑音分布で探索することにより,任意の精度で最適な証明を近似できることを示す。
この結果は、分類器固有の認証に関するさらなる研究を後押しし、ランダム化された平滑化が依然として調査に値することを示す。
論文 参考訳(メタデータ) (2022-06-03T17:48:54Z) - Smooth-Reduce: Leveraging Patches for Improved Certified Robustness [100.28947222215463]
本研究では,Smooth-Reduce の学習自由な修正スムース化手法を提案する。
提案アルゴリズムは,入力画像から抽出した重なり合うパッチを分類し,予測ロジットを集約して,入力周辺の半径が大きいことを証明する。
我々は,このような証明書の理論的保証を提供し,他のランダムな平滑化手法に対する顕著な改善を実証的に示す。
論文 参考訳(メタデータ) (2022-05-12T15:26:20Z) - Tune it the Right Way: Unsupervised Validation of Domain Adaptation via
Soft Neighborhood Density [125.64297244986552]
本稿では,点間の類似度分布のエントロピーを計算し,ソフト近傍の密度を測定する教師なし検証基準を提案する。
私たちの基準は、競合する検証方法よりもシンプルですが、より効果的です。
論文 参考訳(メタデータ) (2021-08-24T17:41:45Z) - Certified Distributional Robustness on Smoothed Classifiers [27.006844966157317]
本稿では,ロバスト性証明として,入力分布に対する最悪の逆損失を提案する。
双対性と滑らか性を利用して、証明書のサロゲートとして容易に計算できる上限を与える。
論文 参考訳(メタデータ) (2020-10-21T13:22:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。