Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing
- URL: http://arxiv.org/abs/2402.08400v2
- Date: Mon, 3 Jun 2024 23:02:26 GMT
- Title: Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing
- Authors: Alaa Anani, Tobias Lorenz, Bernt Schiele, Mario Fritz,
- Abstract summary: certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions.
Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty.
We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components.
- Score: 87.48628403354351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions, a necessity for safety-critical domains. Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty across many classes. We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components classic methods would abstain from, effectively lowering the abstain rate whilst providing more certified semantically meaningful information. We mathematically formulate the problem setup, introduce an adaptive hierarchical certification algorithm and prove the correctness of its guarantees. Since certified accuracy does not take the loss of information into account for coarser classes, we introduce the Certified Information Gain ($\mathrm{CIG}$) metric, which is proportional to the class granularity level. Our extensive experiments on the datasets Cityscapes, PASCAL-Context, ACDC and COCO-Stuff demonstrate that our adaptive algorithm achieves a higher $\mathrm{CIG}$ and lower abstain rate compared to the current state-of-the-art certification method. Our code can be found here: https://github.com/AlaaAnani/adaptive-certify.
Related papers
- Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness [21.394217131341932]
We introduce a novel certifying adapters framework (CAF) that enables and enhances the certification of adversarial robustness.
CAF achieves improved certified accuracies when compared to methods based on random or denoised smoothing.
An ensemble of adapters enables a single pre-trained feature extractor to defend against a range of noise perturbation scales.
arXiv Detail & Related papers (2024-05-25T03:18:52Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
Few-shot adaptation methods do not fare well in the taxonomic open set (TOS) setting.
We propose a prompt tuning technique that calibrates the hierarchical consistency of model predictions.
A new Prompt Tuning for Hierarchical Consistency (ProTeCt) technique is then proposed to calibrate classification across label set granularities.
arXiv Detail & Related papers (2023-06-04T02:55:25Z) - Certified Interpretability Robustness for Class Activation Mapping [77.58769591550225]
We present CORGI, short for Certifiably prOvable Robustness Guarantees for Interpretability mapping.
CORGI is an algorithm that takes in an input image and gives a certifiable lower bound for the robustness of its CAM interpretability map.
We show the effectiveness of CORGI via a case study on traffic sign data, certifying lower bounds on the minimum adversarial perturbation.
arXiv Detail & Related papers (2023-01-26T18:58:11Z) - Double Bubble, Toil and Trouble: Enhancing Certified Robustness through
Transitivity [27.04033198073254]
In response to subtle adversarial examples flipping classifications of neural network models, recent research has promoted certified robustness as a solution.
We show how today's "optimal" certificates can be improved by exploiting both the transitivity of certifications, and the geometry of the input space.
Our technique shows even more promising results, with a uniform $4$ percentage point increase in the achieved certified radius.
arXiv Detail & Related papers (2022-10-12T10:42:21Z) - Towards Evading the Limits of Randomized Smoothing: A Theoretical
Analysis [74.85187027051879]
We show that it is possible to approximate the optimal certificate with arbitrary precision, by probing the decision boundary with several noise distributions.
This result fosters further research on classifier-specific certification and demonstrates that randomized smoothing is still worth investigating.
arXiv Detail & Related papers (2022-06-03T17:48:54Z) - Smooth-Reduce: Leveraging Patches for Improved Certified Robustness [100.28947222215463]
We propose a training-free, modified smoothing approach, Smooth-Reduce.
Our algorithm classifies overlapping patches extracted from an input image, and aggregates the predicted logits to certify a larger radius around the input.
We provide theoretical guarantees for such certificates, and empirically show significant improvements over other randomized smoothing methods.
arXiv Detail & Related papers (2022-05-12T15:26:20Z) - Tune it the Right Way: Unsupervised Validation of Domain Adaptation via
Soft Neighborhood Density [125.64297244986552]
We propose an unsupervised validation criterion that measures the density of soft neighborhoods by computing the entropy of the similarity distribution between points.
Our criterion is simpler than competing validation methods, yet more effective.
arXiv Detail & Related papers (2021-08-24T17:41:45Z) - Certified Distributional Robustness on Smoothed Classifiers [27.006844966157317]
We propose the worst-case adversarial loss over input distributions as a robustness certificate.
By exploiting duality and the smoothness property, we provide an easy-to-compute upper bound as a surrogate for the certificate.
arXiv Detail & Related papers (2020-10-21T13:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.