Distribution Estimation under the Infinity Norm
- URL: http://arxiv.org/abs/2402.08422v1
- Date: Tue, 13 Feb 2024 12:49:50 GMT
- Title: Distribution Estimation under the Infinity Norm
- Authors: Aryeh Kontorovich and Amichai Painsky
- Abstract summary: We present novel bounds for estimating discrete probability distributions under the $ell_infty$ norm.
Our data-dependent convergence guarantees for the maximum likelihood estimator significantly improve upon the currently known results.
- Score: 19.997465098927858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present novel bounds for estimating discrete probability distributions
under the $\ell_\infty$ norm. These are nearly optimal in various precise
senses, including a kind of instance-optimality. Our data-dependent convergence
guarantees for the maximum likelihood estimator significantly improve upon the
currently known results. A variety of techniques are utilized and innovated
upon, including Chernoff-type inequalities and empirical Bernstein bounds. We
illustrate our results in synthetic and real-world experiments. Finally, we
apply our proposed framework to a basic selective inference problem, where we
estimate the most frequent probabilities in a sample.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Rare Event Probability Learning by Normalizing Flows [27.34331961951239]
A rare event is defined by a low probability of occurrence.
We propose normalizing flow assisted importance sampling, termed NOFIS.
The efficacy of our NOFIS method is substantiated through comprehensive qualitative visualizations.
arXiv Detail & Related papers (2023-10-29T21:59:33Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
We propose a probabilistic paradigm to estimate a diverse set of counterfactuals.
We treat the perturbations as random variables endowed with prior distribution functions.
A gradient based sampler with superior convergence characteristics efficiently computes the posterior samples.
arXiv Detail & Related papers (2023-01-21T00:21:11Z) - From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits [0.0]
We study a generic Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical indices computed with re-sampling of the arms' observations.
We show that different variants of this strategy achieve provably optimal regret guarantees when the distributions are bounded and logarithmic regret for semi-bounded distributions with a mild quantile condition.
arXiv Detail & Related papers (2021-11-18T14:34:21Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Preference learning along multiple criteria: A game-theoretic
perspective [97.94912276610002]
We generalize the notion of a von Neumann winner to the multi-criteria setting by taking inspiration from Blackwell's approachability.
Our framework allows for non-linear aggregation of preferences across criteria, and generalizes the linearization-based approach from multi-objective optimization.
We show that the Blackwell winner of a multi-criteria problem instance can be computed as the solution to a convex optimization problem.
arXiv Detail & Related papers (2021-05-05T03:23:11Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.