Two Tales of Single-Phase Contrastive Hebbian Learning
- URL: http://arxiv.org/abs/2402.08573v2
- Date: Sun, 23 Jun 2024 15:14:16 GMT
- Title: Two Tales of Single-Phase Contrastive Hebbian Learning
- Authors: Rasmus Kjær Høier, Christopher Zach,
- Abstract summary: We show that it is possible for a fully local learning algorithm named dual propagation'' to bridge the performance gap to backpropagation.
The algorithm has the drawback that its numerical stability relies on symmetric nudging, which may be restrictive in biological and analog implementations.
- Score: 9.84489449520821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The search for ``biologically plausible'' learning algorithms has converged on the idea of representing gradients as activity differences. However, most approaches require a high degree of synchronization (distinct phases during learning) and introduce substantial computational overhead, which raises doubts regarding their biological plausibility as well as their potential utility for neuromorphic computing. Furthermore, they commonly rely on applying infinitesimal perturbations (nudges) to output units, which is impractical in noisy environments. Recently it has been shown that by modelling artificial neurons as dyads with two oppositely nudged compartments, it is possible for a fully local learning algorithm named ``dual propagation'' to bridge the performance gap to backpropagation, without requiring separate learning phases or infinitesimal nudging. However, the algorithm has the drawback that its numerical stability relies on symmetric nudging, which may be restrictive in biological and analog implementations. In this work we first provide a solid foundation for the objective underlying the dual propagation method, which also reveals a surprising connection with adversarial robustness. Second, we demonstrate how dual propagation is related to a particular adjoint state method, which is stable regardless of asymmetric nudging.
Related papers
- stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic [0.5956301166481089]
We propose a semantically grounded vector representation (feature embedding) of logic formulae.
We compute continuous embeddings of formulae with several desirable properties.
We demonstrate the efficacy of the approach in two tasks: learning model checking and neurosymbolic framework.
arXiv Detail & Related papers (2024-05-23T10:04:56Z) - Dual Propagation: Accelerating Contrastive Hebbian Learning with Dyadic
Neurons [15.147172044848798]
We propose a simple energy based compartmental neuron model, termed dual propagation, in which each neuron is a dyad with two intrinsic states.
The advantage of this method is that only a single inference phase is needed and that inference can be solved in layerwise closed-form.
Experimentally we show on common computer vision datasets, including Imagenet32x32, that dual propagation performs equivalently to back-propagation.
arXiv Detail & Related papers (2023-02-02T17:07:36Z) - Beyond the Edge of Stability via Two-step Gradient Updates [49.03389279816152]
Gradient Descent (GD) is a powerful workhorse of modern machine learning.
GD's ability to find local minimisers is only guaranteed for losses with Lipschitz gradients.
This work focuses on simple, yet representative, learning problems via analysis of two-step gradient updates.
arXiv Detail & Related papers (2022-06-08T21:32:50Z) - Efficient Performance Bounds for Primal-Dual Reinforcement Learning from
Demonstrations [1.0609815608017066]
We consider large-scale Markov decision processes with an unknown cost function and address the problem of learning a policy from a finite set of expert demonstrations.
Existing inverse reinforcement learning methods come with strong theoretical guarantees, but are computationally expensive.
We introduce a novel bilinear saddle-point framework using Lagrangian duality to bridge the gap between theory and practice.
arXiv Detail & Related papers (2021-12-28T05:47:24Z) - Equivalence between algorithmic instability and transition to replica
symmetry breaking in perceptron learning systems [16.065867388984078]
Binary perceptron is a model of supervised learning for the non- algorithmic optimization.
We show that the instability for breaking the replica saddle point is identical to the free energy function.
arXiv Detail & Related papers (2021-11-26T03:23:18Z) - Unpaired Adversarial Learning for Single Image Deraining with Rain-Space
Contrastive Constraints [61.40893559933964]
We develop an effective unpaired SID method which explores mutual properties of the unpaired exemplars by a contrastive learning manner in a GAN framework, named as CDR-GAN.
Our method performs favorably against existing unpaired deraining approaches on both synthetic and real-world datasets, even outperforms several fully-supervised or semi-supervised models.
arXiv Detail & Related papers (2021-09-07T10:00:45Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
We introduce a deep learning framework that learns the one-to-many mappings between the inputs and outputs, together with faithful uncertainty measures.
Our framework demonstrates significantly more accurate uncertainty estimation than the current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-25T05:29:34Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Towards Certified Robustness of Distance Metric Learning [53.96113074344632]
We advocate imposing an adversarial margin in the input space so as to improve the generalization and robustness of metric learning algorithms.
We show that the enlarged margin is beneficial to the generalization ability by using the theoretical technique of algorithmic robustness.
arXiv Detail & Related papers (2020-06-10T16:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.