論文の概要: Latent Inversion with Timestep-aware Sampling for Training-free Non-rigid Editing
- arxiv url: http://arxiv.org/abs/2402.08601v3
- Date: Wed, 16 Oct 2024 15:16:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:38:54.948591
- Title: Latent Inversion with Timestep-aware Sampling for Training-free Non-rigid Editing
- Title(参考訳): 学習不要な非剛性編集のための時間認識サンプリングによる潜時インバージョン
- Authors: Yunji Jung, Seokju Lee, Tair Djanibekov, Hyunjung Shim, Jong Chul Ye,
- Abstract要約: 安定拡散を用いた非剛性編集のための学習自由アプローチを提案する。
提案手法は,テキスト最適化,潜時反転,タイムステップ対応テキストインジェクションサンプリングの3段階からなる。
本手法の有効性を,アイデンティティの保存,編集性,美的品質の観点から示す。
- 参考スコア(独自算出の注目度): 56.536695050042546
- License:
- Abstract: Text-guided non-rigid editing involves complex edits for input images, such as changing motion or compositions within their surroundings. Since it requires manipulating the input structure, existing methods often struggle with preserving object identity and background, particularly when combined with Stable Diffusion. In this work, we propose a training-free approach for non-rigid editing with Stable Diffusion, aimed at improving the identity preservation quality without compromising editability. Our approach comprises three stages: text optimization, latent inversion, and timestep-aware text injection sampling. Inspired by the success of Imagic, we employ their text optimization for smooth editing. Then, we introduce latent inversion to preserve the input image's identity without additional model fine-tuning. To fully utilize the input reconstruction ability of latent inversion, we suggest timestep-aware text injection sampling. This effectively retains the structure of the input image by injecting the source text prompt in early sampling steps and then transitioning to the target prompt in subsequent sampling steps. This strategic approach seamlessly harmonizes with text optimization, facilitating complex non-rigid edits to the input without losing the original identity. We demonstrate the effectiveness of our method in terms of identity preservation, editability, and aesthetic quality through extensive experiments.
- Abstract(参考訳): テキスト誘導非剛体編集は、周囲の動作や構成の変更など、入力画像の複雑な編集を含む。
入力構造を操作する必要があるため、既存のメソッドはオブジェクトのアイデンティティと背景を保存するのに苦労することが多い。
本研究では,Stable Diffusionを用いた非剛性編集のためのトレーニング不要な手法を提案する。
提案手法は,テキスト最適化,潜時反転,タイムステップ対応テキストインジェクションサンプリングの3段階からなる。
Imagicの成功に触発されて、スムーズな編集にテキスト最適化を採用しました。
次に,入力画像のアイデンティティを保持するために,追加のモデル微調整を行わずに潜時反転を導入する。
潜時反転の入力再構成能力をフル活用するために,時刻認識型テキストインジェクションサンプリングを提案する。
これにより、初期サンプリングステップでソーステキストプロンプトを注入し、その後サンプリングステップでターゲットプロンプトに遷移することにより、入力画像の構造を効果的に保持する。
この戦略的アプローチはテキスト最適化とシームレスに調和し、元のアイデンティティを失うことなく複雑な非厳密な編集を容易にする。
本手法の有効性を, 広範囲な実験を通して, アイデンティティ保存, 編集性, 審美的品質の観点から示す。
関連論文リスト
- Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv) は、特定の編集タスクに適した実際の画像を反転して編集する新しいフレームワークである。
ToDInvは相互最適化によってインバージョンと編集をシームレスに統合し、高い忠実さと正確な編集性を保証する。
論文 参考訳(メタデータ) (2024-08-23T22:16:34Z) - TurboEdit: Instant text-based image editing [32.06820085957286]
我々は,数ステップの拡散モデルを用いて,正確な画像逆転と非交叉画像編集の課題に対処する。
本稿では,エンコーダをベースとした反復インバージョン手法を提案する。このインバージョンネットワークは,入力画像と前ステップからの再構成画像に条件付けされており,次の再構成を入力画像に向けて修正することができる。
提案手法は, リアルタイムなテキストガイド画像編集を容易にするため, インバージョンでは8つの機能評価 (NFE) と4つのNFE (NFE) しか必要としない。
論文 参考訳(メタデータ) (2024-08-14T18:02:24Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
テキストベースの一般的な編集フレームワーク – 編集フレンドリーなDDPM-noiseインバージョンアプローチ – に注目します。
高速サンプリング法への適用を解析し、その失敗を視覚的アーティファクトの出現と編集強度の不足という2つのクラスに分類する。
そこで我々は,新しいアーティファクトを導入することなく,効率よく編集の規模を拡大する疑似誘導手法を提案する。
論文 参考訳(メタデータ) (2024-08-01T17:27:28Z) - DragText: Rethinking Text Embedding in Point-based Image Editing [3.1923251959845214]
拡散モデルにおける入力画像のプログレッシブな編集において,テキスト埋め込みは一定であることを示す。
そこで我々はDragTextを提案する。DragTextはドラッグ処理と同時にテキスト埋め込みを最適化し、修正された画像埋め込みと組み合わせる。
論文 参考訳(メタデータ) (2024-07-25T07:57:55Z) - Tuning-Free Inversion-Enhanced Control for Consistent Image Editing [44.311286151669464]
我々は、チューニング不要なインバージョン強化制御(TIC)と呼ばれる新しいアプローチを提案する。
TICは、インバージョンプロセスとサンプリングプロセスの特徴を相関付け、DDIM再構成の不整合を軽減する。
また、インバージョンと単純なDDIM編集プロセスの両方の内容を組み合わせたマスク誘導型アテンション結合戦略を提案する。
論文 参考訳(メタデータ) (2023-12-22T11:13:22Z) - Latent Space Editing in Transformer-Based Flow Matching [53.75073756305241]
Flow Matching with a transformer backboneはスケーラブルで高品質な生成モデリングの可能性を秘めている。
編集スペースである$u$-spaceを導入し、制御可能で、蓄積可能で、構成可能な方法で操作できる。
最後に,テキストプロンプトを用いた微粒でニュアンスな編集を実現するための,単純かつ強力な手法を提案する。
論文 参考訳(メタデータ) (2023-12-17T21:49:59Z) - BARET : Balanced Attention based Real image Editing driven by
Target-text Inversion [36.59406959595952]
本研究では, 微調整拡散モデルを用いずに, 非剛性編集を含む様々な編集タイプに対して, 入力画像とターゲットテキストのみを必要とする新しい編集手法を提案する。
I)ターゲットテキストインバージョン・スケジュール(TTIS)は、画像キャプションや収束の加速なしに高速な画像再構成を実現するために、入力対象のテキスト埋め込みを微調整するように設計されている; (II)プログレッシブ・トランジション・スキームは、ターゲットのテキスト埋め込みとその微調整バージョンの間の進行線形アプローチを適用し、非剛性編集能力を維持するための遷移埋め込みを生成する; (III) バランスド・アテンション・モジュール(BAM)は、テキスト記述と画像意味論のトレードオフをバランスさせる。
論文 参考訳(メタデータ) (2023-12-09T07:18:23Z) - Inversion-Free Image Editing with Natural Language [18.373145158518135]
InfEdit(Inversion-free editing)は、厳密な意味的変化と非厳密な意味的変化の両面において、一貫性と忠実な編集を可能にする。
InfEditは、様々な編集タスクで強力なパフォーマンスを示し、また、1つのA40で3秒以内のシームレスなワークフローを維持し、リアルタイムアプリケーションの可能性を示している。
論文 参考訳(メタデータ) (2023-12-07T18:58:27Z) - StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing [86.92711729969488]
我々は、画像の編集に事前訓練された拡散モデルの驚くべき能力を利用する。
彼らはモデルを微調整するか、事前訓練されたモデルの潜在空間で画像を反転させる。
選択された地域に対する不満足な結果と、非選択された地域における予期せぬ変化の2つの問題に悩まされている。
論文 参考訳(メタデータ) (2023-03-28T00:16:45Z) - Being Comes from Not-being: Open-vocabulary Text-to-Motion Generation
with Wordless Training [178.09150600453205]
本稿では、ゼロショット学習方式でオフラインのオープン語彙テキスト・トゥ・モーション生成について検討する。
NLPの即時学習にインスパイアされ、マスクされた動きから全動作を再構築する動き生成装置を事前訓練する。
本手法では,入力テキストをマスクした動作に再構成することで,動作生成者の動作を再構築する。
論文 参考訳(メタデータ) (2022-10-28T06:20:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。