AMEND: A Mixture of Experts Framework for Long-tailed Trajectory Prediction
- URL: http://arxiv.org/abs/2402.08698v2
- Date: Fri, 26 Apr 2024 18:02:38 GMT
- Title: AMEND: A Mixture of Experts Framework for Long-tailed Trajectory Prediction
- Authors: Ray Coden Mercurius, Ehsan Ahmadi, Soheil Mohamad Alizadeh Shabestary, Amir Rasouli,
- Abstract summary: We propose a modular model-agnostic framework for trajectory prediction.
Each expert is trained with a specialized skill with respect to a particular part of the data.
To produce predictions, we utilise a router network that selects the best expert by generating relative confidence scores.
- Score: 6.724750970258851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of pedestrians' future motions is critical for intelligent driving systems. Developing models for this task requires rich datasets containing diverse sets of samples. However, the existing naturalistic trajectory prediction datasets are generally imbalanced in favor of simpler samples and lack challenging scenarios. Such a long-tail effect causes prediction models to underperform on the tail portion of the data distribution containing safety-critical scenarios. Previous methods tackle the long-tail problem using methods such as contrastive learning and class-conditioned hypernetworks. These approaches, however, are not modular and cannot be applied to many machine learning architectures. In this work, we propose a modular model-agnostic framework for trajectory prediction that leverages a specialized mixture of experts. In our approach, each expert is trained with a specialized skill with respect to a particular part of the data. To produce predictions, we utilise a router network that selects the best expert by generating relative confidence scores. We conduct experimentation on common pedestrian trajectory prediction datasets and show that our method improves performance on long-tail scenarios. We further conduct ablation studies to highlight the contribution of different proposed components.
Related papers
- Adaptive Prediction Ensemble: Improving Out-of-Distribution Generalization of Motion Forecasting [15.916325272109454]
We propose a novel framework, Adaptive Prediction Ensemble (APE), which integrates deep learning and rule-based prediction experts.
A learned routing function, trained concurrently with the deep learning model, dynamically selects the most reliable prediction based on the input scenario.
This work highlights the potential of hybrid approaches for robust and generalizable motion prediction in autonomous driving.
arXiv Detail & Related papers (2024-07-12T17:57:00Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory
Prediction [11.960234424309265]
We propose EquiDiff, a deep generative model for predicting future vehicle trajectories.
EquiDiff is based on the conditional diffusion model, which generates future trajectories by incorporating historical information and random Gaussian noise.
Our results demonstrate that EquiDiff outperforms other baseline models in short-term prediction, but has slightly higher errors for long-term prediction.
arXiv Detail & Related papers (2023-08-12T13:17:09Z) - FEND: A Future Enhanced Distribution-Aware Contrastive Learning
Framework for Long-tail Trajectory Prediction [19.626383744807068]
In this paper, we focus on dealing with the long-tail phenomenon in trajectory prediction.
We put forward a future enhanced contrastive learning framework to recognize tail trajectory patterns and form a feature space with separate pattern clusters.
Our framework outperforms the state-of-the-art long-tail prediction method on tailed samples by 9.5% on ADE and 8.5% on FDE.
arXiv Detail & Related papers (2023-03-29T10:16:55Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Towards Unbiased and Accurate Deferral to Multiple Experts [19.24068936057053]
We propose a framework that simultaneously learns a classifier and a deferral system, with the deferral system choosing to defer to one or more human experts.
We test our framework on a synthetic dataset and a content moderation dataset with biased synthetic experts, and show that it significantly improves the accuracy and fairness of the final predictions.
arXiv Detail & Related papers (2021-02-25T17:08:39Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.