Memory effects in a sequence of measurements of non-commuting observables
- URL: http://arxiv.org/abs/2402.08737v2
- Date: Wed, 11 Sep 2024 15:27:21 GMT
- Title: Memory effects in a sequence of measurements of non-commuting observables
- Authors: Sophia M. Walls, Ian J. Ford,
- Abstract summary: We describe alternating measurements of two non-commuting observables.
Projective measurement of an observable completely destroys memory of the outcome of a previous measurement of the conjugate observable.
We apply our methods to a spin 1/2 system and a spin 1 system undergoing alternating measurements of the $S_z$ and $S_x$ spin observables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use continuous, stochastic quantum trajectories within a framework of quantum state diffusion (QSD) to describe alternating measurements of two non-commuting observables. Projective measurement of an observable completely destroys memory of the outcome of a previous measurement of the conjugate observable. In contrast, measurement under QSD is not projective and it is possible to vary the rate at which information about previous measurement outcomes is lost by changing the strength of measurement. We apply our methods to a spin 1/2 system and a spin 1 system undergoing alternating measurements of the $S_{z}$ and $S_{x}$ spin observables. Performing strong $S_{z}$ measurements and weak $S_{x}$ measurements on the spin 1 system, we demonstrate return to the same eigenstate of $S_{z}$ to a degree beyond that expected from projective measurements and the Born rule. Such a memory effect appears to be greater for return to the $\pm1$ eigenstates than the $0$ eigenstate. Furthermore, the spin 1 system follows a measurement cascade process where an initial superposition of the three eigenstates of the observable evolves into a superposition of just two, before finally collapsing into a single eigenstate, giving rise to a distinctive pattern of evolution of the spin components.
Related papers
- Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Stochastic quantum trajectories demonstrate the Quantum Zeno Effect in
open spin 1/2, spin 1 and spin 3/2 systems [0.0]
We investigate the Quantum Zeno Effect in spin 1/2, spin 1 and spin 3/2 open quantum systems undergoing Rabi oscillations.
For very strong measurement, the oscillations resemble randomly occurring near-instantaneous jumps.
For spin 1 and spin 3/2 systems, the measurement strength determines which eigenstates are explored and the Quantum Zeno Effect is stronger when the system dwells in the vicinity of certain eigenstates.
arXiv Detail & Related papers (2022-09-21T19:46:38Z) - Deterministic preparation of supersinglets with collective spin
projections [4.403241928718266]
We introduce a procedure to generate supersinglets, the multipartite generalization of angular momentum singlet states.
A supersinglet is defined as a total spin zero state consisting of $ N $ spin-$ j $ particles.
arXiv Detail & Related papers (2022-04-15T16:33:04Z) - The Uncertainty Principle Revisited [0.0]
We study the quantum-mechanical uncertainty relation originating from the successive measurement of two observables.
We find a general connection of this uncertainty relation with the commutator of the two observables.
arXiv Detail & Related papers (2020-05-30T20:09:02Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.