Continuously Monitored Quantum Systems beyond Lindblad Dynamics
- URL: http://arxiv.org/abs/2305.04108v1
- Date: Sat, 6 May 2023 18:09:17 GMT
- Title: Continuously Monitored Quantum Systems beyond Lindblad Dynamics
- Authors: Guglielmo Lami, Alessandro Santini, Mario Collura
- Abstract summary: We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamics of a quantum system, undergoing unitary evolution and continuous
monitoring, can be described in term of quantum trajectories. Although the
averaged state fully characterises expectation values, the entire ensamble of
stochastic trajectories goes beyond simple linear observables, keeping a more
attentive description of the entire dynamics. Here we go beyond the Lindblad
dynamics and study the probability distribution of the expectation value of a
given observable over the possible quantum trajectories. The measurements are
applied to the entire system, having the effect of projecting the system into a
product state. We develop an analytical tool to evaluate this probability
distribution at any time t. We illustrate our approach by analyzing two
paradigmatic examples: a single qubit subjected to magnetization measurements,
and a free hopping particle subjected to position measurements.
Related papers
- Exact model reduction for discrete-time conditional quantum dynamics [0.0]
We propose a method to reduce the dimension of quantum filters in discrete-time, while maintaining the correct distributions on the measurement outcomes and the expectations of some relevant observable.
The method is presented for general quantum systems whose dynamics depend on measurement outcomes, hinges on a system-theoretic observability analysis, and is tested on examples.
arXiv Detail & Related papers (2024-03-19T09:34:13Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Stochastic Path Integral Analysis of the Continuously Monitored Quantum
Harmonic Oscillator [0.0]
We deduce the evolution equations for position and momentum expectation values and the covariance matrix elements from the system's characteristic function.
Our results provide insights into the time dependence of the system during the measurement process, motivating their importance for quantum measurement engine/refrigerator experiments.
arXiv Detail & Related papers (2021-03-10T15:04:49Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance
Transition [0.0]
We show that for a many-body system evolving under competing unitary evolution and variable-strength measurements the onset of the Zeno effect takes the form of a sharp phase transition.
We show that this transition is invisible to the average dynamics, but encoded in the rare fluctuations of the measurement process.
arXiv Detail & Related papers (2020-11-23T18:49:47Z) - Microscopic biasing of discrete-time quantum trajectories [0.0]
We consider a discrete-time quantum dynamics, where the open system collides sequentially with qubit probes which are then measured.
We show that the desired biasing is achieved by suitably modifying the Kraus operators describing the discrete open dynamics.
The above extends the theory of biased quantum trajectories from Lindblad-like dynamics to sequences of arbitrary dynamical maps.
arXiv Detail & Related papers (2020-07-30T18:00:02Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.