論文の概要: LLM-driven Imitation of Subrational Behavior : Illusion or Reality?
- arxiv url: http://arxiv.org/abs/2402.08755v1
- Date: Tue, 13 Feb 2024 19:46:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 18:12:44.136766
- Title: LLM-driven Imitation of Subrational Behavior : Illusion or Reality?
- Title(参考訳): LLMによる従属行動の模倣 : 錯覚か現実か?
- Authors: Andrea Coletta, Kshama Dwarakanath, Penghang Liu, Svitlana Vyetrenko,
Tucker Balch
- Abstract要約: 既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
- 参考スコア(独自算出の注目度): 3.2365468114603937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling subrational agents, such as humans or economic households, is
inherently challenging due to the difficulty in calibrating reinforcement
learning models or collecting data that involves human subjects. Existing work
highlights the ability of Large Language Models (LLMs) to address complex
reasoning tasks and mimic human communication, while simulation using LLMs as
agents shows emergent social behaviors, potentially improving our comprehension
of human conduct. In this paper, we propose to investigate the use of LLMs to
generate synthetic human demonstrations, which are then used to learn
subrational agent policies though Imitation Learning. We make an assumption
that LLMs can be used as implicit computational models of humans, and propose a
framework to use synthetic demonstrations derived from LLMs to model
subrational behaviors that are characteristic of humans (e.g., myopic behavior
or preference for risk aversion). We experimentally evaluate the ability of our
framework to model sub-rationality through four simple scenarios, including the
well-researched ultimatum game and marshmallow experiment. To gain confidence
in our framework, we are able to replicate well-established findings from prior
human studies associated with the above scenarios. We conclude by discussing
the potential benefits, challenges and limitations of our framework.
- Abstract(参考訳): 人間や経済世帯などのサブリレーショナルエージェントのモデリングは、強化学習モデルの校正や人体に関わるデータの収集が困難であるため、本質的に困難である。
既存の研究は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデル(LLM)の能力を強調している。
本稿では, 模倣学習をしながら, 補助エージェント政策を学習するために使用される合成ヒト実験を, llmを用いて生成する手法について検討する。
我々は,LLMを人間の暗黙的な計算モデルとして利用することができると仮定し,LLMから派生した合成デモンストレーションを用いて,人間の特徴的なサブリレーショナルな行動(例えば,明視的行動やリスク回避の嗜好)をモデル化する枠組みを提案する。
4つの単純なシナリオを用いて,本フレームワークのサブリレータリティをモデル化する能力について実験的に評価した。
枠組みの信頼性を高めるため、上記のシナリオに関連する先行研究から確立された知見を再現することができる。
最後に、フレームワークの潜在的なメリット、課題、制限について論じます。
関連論文リスト
- Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina [7.155982875107922]
研究は、大規模言語モデル(LLM)が、経済実験、調査、政治談話において、人間の行動と整合した人間的な推論を示す可能性があることを示唆している。
このことから、LLMは社会科学研究において人間の代理やシミュレーションとして使用できると多くの人が提案している。
11~20のマネーリクエストゲームを用いてLCMの推論深度を評価する。
論文 参考訳(メタデータ) (2024-10-25T14:46:07Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - Large Language Models Need Consultants for Reasoning: Becoming an Expert in a Complex Human System Through Behavior Simulation [5.730580726163518]
大規模言語モデル(LLM)は、数学、法学、コーディング、常識、世界知識といった分野において、人間に匹敵する優れた能力を示してきた。
本稿では,生成エージェントによるシミュレーション技術を活用した新たな推論フレームワークであるMosaic Expert Observation Wall' (MEOW)を提案する。
論文 参考訳(メタデータ) (2024-03-27T03:33:32Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
大規模言語モデル(LLM)は、人間の知性の側面を忠実に模倣するシステムとして認識されている。
本稿では,仮想キャラクタのライフストーリーをゼロから構築するためのフレームワークを提案する。
実験により, 構築したシミュラクラは, 対象キャラクタと一致した擬人化応答を生成できることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:11:14Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
人間の相互作用をシミュレートする際の大規模言語モデルの限界について検討する。
以上の結果から, LLMエージェントがモデル固有の社会的バイアスに適合する傾向が示唆された。
これらの結果は、エージェントがこれらのバイアスを克服するのに役立つ方法を開発するためのさらなる研究の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-06T14:51:55Z) - CoMPosT: Characterizing and Evaluating Caricature in LLM Simulations [61.9212914612875]
本研究では,LLMシミュレーションを4次元(コンテキスト,モデル,ペルソナ,トピック)で特徴付けるフレームワークを提案する。
我々は,この枠組みを用いて,オープンエンドLLMシミュレーションのキャラクチュアへの感受性を測定する。
GPT-4では、特定の人口動態(政治的・疎外化グループ)と話題(一般には非論争的)のシミュレーションは、似顔絵に非常に敏感であることが判明した。
論文 参考訳(メタデータ) (2023-10-17T18:00:25Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
本稿では,基本言語モデルと人間の監督を最小限に整合させる新しいアプローチ,すなわちSALMONを提案する。
私たちはDromedary-2という名のAIアシスタントを開発しており、コンテキスト内学習には6つの例と31の人間定義原則しかありません。
論文 参考訳(メタデータ) (2023-10-09T17:56:53Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - Large Language Models as Zero-Shot Human Models for Human-Robot Interaction [12.455647753787442]
大型言語モデル(LLM)は、人間とロボットの相互作用のためのゼロショット人間モデルとして機能する。
LLMは目的のモデルに匹敵する性能を達成する。
シミュレーションされた信頼に基づくテーブルクリーニングタスクのケーススタディを提案する。
論文 参考訳(メタデータ) (2023-03-06T23:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。