Optimal Task Assignment and Path Planning using Conflict-Based Search with Precedence and Temporal Constraints
- URL: http://arxiv.org/abs/2402.08772v3
- Date: Mon, 22 Apr 2024 00:46:34 GMT
- Title: Optimal Task Assignment and Path Planning using Conflict-Based Search with Precedence and Temporal Constraints
- Authors: Yu Quan Chong, Jiaoyang Li, Katia Sycara,
- Abstract summary: This paper examines the Task Assignment and Path Finding with Precedence and Temporal Constraints (TAPF-PTC) problem.
We augment Conflict-Based Search (CBS) to simultaneously generate task assignments and collision-free paths that adhere to precedence and temporal constraints.
Experimentally, we demonstrate that our algorithm, CBS-TA-PTC, can solve highly challenging bomb-defusing tasks with precedence and temporal constraints efficiently.
- Score: 5.265273282482319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Multi-Agent Path Finding (MAPF) problem entails finding collision-free paths for a set of agents, guiding them from their start to goal locations. However, MAPF does not account for several practical task-related constraints. For example, agents may need to perform actions at goal locations with specific execution times, adhering to predetermined orders and timeframes. Moreover, goal assignments may not be predefined for agents, and the optimization objective may lack an explicit definition. To incorporate task assignment, path planning, and a user-defined objective into a coherent framework, this paper examines the Task Assignment and Path Finding with Precedence and Temporal Constraints (TAPF-PTC) problem. We augment Conflict-Based Search (CBS) to simultaneously generate task assignments and collision-free paths that adhere to precedence and temporal constraints, maximizing an objective quantified by the return from a user-defined reward function in reinforcement learning (RL). Experimentally, we demonstrate that our algorithm, CBS-TA-PTC, can solve highly challenging bomb-defusing tasks with precedence and temporal constraints efficiently relative to MARL and adapted Target Assignment and Path Finding (TAPF) methods.
Related papers
- Learning Hidden Subgoals under Temporal Ordering Constraints in Reinforcement Learning [14.46490764849977]
We propose a novel RL algorithm for bf l hidden bf subgoals under bf temporal bf ordering bf constraints (LSTOC)
We propose a new contrastive learning objective which can effectively learn hidden subgoals and their temporal orderings at the same time.
arXiv Detail & Related papers (2024-11-03T03:22:39Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning.
The algorithm selects the order of tasks that provide the fastest learning for agents.
We demonstrate that SITP matches or surpasses the results of other curriculum design methods.
arXiv Detail & Related papers (2022-12-30T12:32:43Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Optimal Multi-Agent Path Finding for Precedence Constrained Planning
Tasks [0.7742297876120561]
We consider an extension to this problem, Precedence Constrained Multi-Agent Path Finding (PC-MAPF)
We propose a novel algorithm, Precedence Constrained Conflict Based Search (PC-CBS), which finds makespan-optimal solutions for this class of problems.
We benchmark the performance of this algorithm over various warehouse assembly, and multi-agent pickup and delivery tasks, and use it to evaluate the sub-optimality of a recently proposed efficient baseline.
arXiv Detail & Related papers (2022-02-08T07:26:45Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
Goal-conditioned reinforcement learning can solve tasks in a wide range of domains, including navigation and manipulation.
We propose the distant goal-reaching task by using search at training time to automatically generate intermediate states.
E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
arXiv Detail & Related papers (2021-10-22T22:05:31Z) - Symmetry Breaking for k-Robust Multi-Agent Path Finding [30.645303869311366]
k-Robust Conflict-BasedSearch (k-CBS) is an algorithm that produces coordinated and collision-free plan that is robust for up to k delays.
We introduce a variety of pairwise symmetry breaking constraints, specific to k-robust planning, that can efficiently find compatible and optimal paths for pairs of conflicting agents.
arXiv Detail & Related papers (2021-02-17T11:09:33Z) - Multi-objective Conflict-based Search for Multi-agent Path Finding [10.354181009277623]
Multi-objective path planners typically compute an ensemble of paths while optimizing a single objective, such as path length.
This article presents an approach named Multi-objective Conflict-based Search (MO-CBS) that bypasses this so-called curse of dimensionality.
arXiv Detail & Related papers (2021-01-11T10:42:38Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.