論文の概要: Hybrid Inverse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2402.08848v2
- Date: Wed, 5 Jun 2024 00:17:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 01:21:50.740242
- Title: Hybrid Inverse Reinforcement Learning
- Title(参考訳): ハイブリッド逆強化学習
- Authors: Juntao Ren, Gokul Swamy, Zhiwei Steven Wu, J. Andrew Bagnell, Sanjiban Choudhury,
- Abstract要約: 逆強化学習による模倣学習は 両刃剣である。
我々は、不要な探索を抑えるために、ハイブリッドRL(オンラインデータとエキスパートデータの混合に関するトレーニング)の使用を提案する。
モデルフリーとモデルベースハイブリッド逆RLアルゴリズムの両方を導出し、強力なポリシー性能を保証する。
- 参考スコア(独自算出の注目度): 34.793570631021005
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The inverse reinforcement learning approach to imitation learning is a double-edged sword. On the one hand, it can enable learning from a smaller number of expert demonstrations with more robustness to error compounding than behavioral cloning approaches. On the other hand, it requires that the learner repeatedly solve a computationally expensive reinforcement learning (RL) problem. Often, much of this computation is wasted searching over policies very dissimilar to the expert's. In this work, we propose using hybrid RL -- training on a mixture of online and expert data -- to curtail unnecessary exploration. Intuitively, the expert data focuses the learner on good states during training, which reduces the amount of exploration required to compute a strong policy. Notably, such an approach doesn't need the ability to reset the learner to arbitrary states in the environment, a requirement of prior work in efficient inverse RL. More formally, we derive a reduction from inverse RL to expert-competitive RL (rather than globally optimal RL) that allows us to dramatically reduce interaction during the inner policy search loop while maintaining the benefits of the IRL approach. This allows us to derive both model-free and model-based hybrid inverse RL algorithms with strong policy performance guarantees. Empirically, we find that our approaches are significantly more sample efficient than standard inverse RL and several other baselines on a suite of continuous control tasks.
- Abstract(参考訳): 逆強化学習による模倣学習は、二重刃の剣である。
一方、少数の専門家によるデモから学ぶことは、行動的クローニングアプローチよりも、エラーの複雑化に対して堅牢性が高い。
一方,学習者は計算コストのかかる強化学習(RL)問題を繰り返し解く必要がある。
多くの場合、この計算の多くは専門家と非常に異なるポリシーを検索するのに費やされている。
本研究では,オンラインデータとエキスパートデータの混在をトレーニングするハイブリッドRLを用いて,不要な探索を抑えることを提案する。
直感的には、専門家データは学習者がトレーニング中に良い状態に焦点を合わせ、強力なポリシーを計算するのに必要な探索の量を削減します。
特に、そのようなアプローチでは学習者を環境内の任意の状態にリセットする必要がない。
より正式には、逆RLから専門家競合RL(グローバル最適RLではなく)への還元により、IRLアプローチの利点を維持しつつ、内部ポリシー探索ループ間の相互作用を劇的に低減できる。
これにより、強力なポリシー性能を保証するモデルフリーとモデルベースハイブリッド逆RLアルゴリズムの両方を導出できる。
実験によって、我々のアプローチは、標準的な逆RLや連続制御タスクのスイート上のいくつかのベースラインよりもはるかにサンプル効率が高いことが判明した。
関連論文リスト
- The Virtues of Pessimism in Inverse Reinforcement Learning [38.98656220917943]
逆強化学習(Inverse Reinforcement Learning)は、専門家によるデモンストレーションから複雑な振る舞いを学ぶための強力なフレームワークである。
内ループRLにおける専門家のデモンストレーションを活用することにより、探査負担を軽減することが望ましい。
我々は、IRLにおけるRLの高速化のための代替アプローチとして、Emphpessimism、すなわち、オフラインのRLアルゴリズムを用いてインスタンス化された専門家のデータ分布に近づき続けることを考える。
論文 参考訳(メタデータ) (2024-02-04T21:22:29Z) - Supplementing Gradient-Based Reinforcement Learning with Simple
Evolutionary Ideas [4.873362301533824]
我々は、強化学習(RL)における大規模だが指向的な学習ステップを導入するための、単純でサンプル効率のよいアルゴリズムを提案する。
この手法では、共通経験バッファを持つRLエージェントの集団を用いて、ポリシー空間を効率的に探索するために、エージェントのクロスオーバーと突然変異を行う。
論文 参考訳(メタデータ) (2023-05-10T09:46:53Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
好みに基づく強化学習アルゴリズムを対象とした探索手法を提案する。
我々の基本的な考え方は、学習した報酬に基づいて、斬新さを測定することによって、本質的な報酬を設計することである。
実験により、学習報酬の不確実性からの探索ボーナスは、好みに基づくRLアルゴリズムのフィードバック効率とサンプル効率の両方を改善することが示された。
論文 参考訳(メタデータ) (2022-05-24T23:22:10Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Decoupling Exploration and Exploitation in Reinforcement Learning [8.946655323517092]
本稿では、探索と搾取のための個別の政策を訓練するDecoupled RL(DeRL)を提案する。
複数種類の内因性報酬を持つ2つのスパース・リワード環境におけるDeRLアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-07-19T15:31:02Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
相対エントロピーQラーニング(Relative Entropy Q-Learning、REQ)は、オフラインおよび従来のRLアルゴリズムのアイデアを組み合わせた単純なポリシーアルゴリズムである。
本稿では、REQが、デモから一般の政治外RL、オフラインRL、およびRLにどのように有効であるかを示す。
論文 参考訳(メタデータ) (2020-10-16T18:48:49Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
本稿では, オフラインメタ強化学習(OMRL)問題について検討する。これは, 強化学習(RL)アルゴリズムが未知のタスクに迅速に適応できるようにするパラダイムである。
この問題はまだ完全には理解されていないが、2つの大きな課題に対処する必要がある。
我々は、いくつかの単純な設計選択が、最近のアプローチよりも大幅に改善できることを示す分析と洞察を提供する。
論文 参考訳(メタデータ) (2020-10-02T17:13:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。