Towards Robust Model-Based Reinforcement Learning Against Adversarial Corruption
- URL: http://arxiv.org/abs/2402.08991v3
- Date: Sat, 20 Jul 2024 15:23:25 GMT
- Title: Towards Robust Model-Based Reinforcement Learning Against Adversarial Corruption
- Authors: Chenlu Ye, Jiafan He, Quanquan Gu, Tong Zhang,
- Abstract summary: This study tackles the challenges of adversarial corruption in model-based reinforcement learning (RL)
We introduce an algorithm called corruption-robust optimistic MLE (CR-OMLE), which leverages total-variation (TV)-based information ratios as uncertainty weights for MLE.
We extend our weighting technique to the offline setting, and propose an algorithm named corruption-robust pessimistic MLE (CR-PMLE)
- Score: 60.958746600254884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study tackles the challenges of adversarial corruption in model-based reinforcement learning (RL), where the transition dynamics can be corrupted by an adversary. Existing studies on corruption-robust RL mostly focus on the setting of model-free RL, where robust least-square regression is often employed for value function estimation. However, these techniques cannot be directly applied to model-based RL. In this paper, we focus on model-based RL and take the maximum likelihood estimation (MLE) approach to learn transition model. Our work encompasses both online and offline settings. In the online setting, we introduce an algorithm called corruption-robust optimistic MLE (CR-OMLE), which leverages total-variation (TV)-based information ratios as uncertainty weights for MLE. We prove that CR-OMLE achieves a regret of $\tilde{\mathcal{O}}(\sqrt{T} + C)$, where $C$ denotes the cumulative corruption level after $T$ episodes. We also prove a lower bound to show that the additive dependence on $C$ is optimal. We extend our weighting technique to the offline setting, and propose an algorithm named corruption-robust pessimistic MLE (CR-PMLE). Under a uniform coverage condition, CR-PMLE exhibits suboptimality worsened by $\mathcal{O}(C/n)$, nearly matching the lower bound. To the best of our knowledge, this is the first work on corruption-robust model-based RL algorithms with provable guarantees.
Related papers
- Robust Reinforcement Learning from Corrupted Human Feedback [86.17030012828003]
Reinforcement learning from human feedback (RLHF) provides a principled framework for aligning AI systems with human preference data.
We propose a robust RLHF approach -- $R3M$, which models the potentially corrupted preference label as sparse outliers.
Our experiments on robotic control and natural language generation with large language models (LLMs) show that $R3M$ improves robustness of the reward against several types of perturbations to the preference data.
arXiv Detail & Related papers (2024-06-21T18:06:30Z) - Corruption Robust Offline Reinforcement Learning with Human Feedback [33.33154679893122]
We study data corruption robustness for reinforcement learning with human feedback (RLHF) in an offline setting.
We aim to design algorithms that identify a near-optimal policy from the corrupted data, with provable guarantees.
arXiv Detail & Related papers (2024-02-09T19:09:48Z) - MICRO: Model-Based Offline Reinforcement Learning with a Conservative Bellman Operator [13.140242573639629]
offline reinforcement learning (RL) faces a significant challenge of distribution shift.
Model-free offline RL penalizes the Q value for out-of-distribution (OOD) data or constrains the policy closed to the behavior policy to tackle this problem.
This paper proposes a new model-based offline algorithm with a conservative Bellman operator (MICRO)
arXiv Detail & Related papers (2023-12-07T02:17:45Z) - Corruption-Robust Offline Reinforcement Learning with General Function
Approximation [60.91257031278004]
We investigate the problem of corruption in offline reinforcement learning (RL) with general function approximation.
Our goal is to find a policy that is robust to such corruption and minimizes the suboptimality gap with respect to the optimal policy for the uncorrupted Markov decision processes (MDPs)
arXiv Detail & Related papers (2023-10-23T04:07:26Z) - Double Pessimism is Provably Efficient for Distributionally Robust
Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage [15.858892479232656]
We study robust offline reinforcement learning (robust offline RL)
We propose a generic algorithm framework called Doubly Pessimistic Model-based Policy Optimization ($P2MPO$)
We show that $P2MPO$ enjoys a $tildemathcalO(n-1/2)$ convergence rate, where $n$ is the dataset size.
arXiv Detail & Related papers (2023-05-16T17:58:05Z) - Principled Reinforcement Learning with Human Feedback from Pairwise or
$K$-wise Comparisons [79.98542868281473]
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF)
We show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions.
arXiv Detail & Related papers (2023-01-26T18:07:21Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences.
Instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human overseer.
We propose the first optimistic model-based algorithm for PbRL with general function approximation.
arXiv Detail & Related papers (2022-05-23T09:03:24Z) - Towards Tractable Optimism in Model-Based Reinforcement Learning [37.51073590932658]
To be successful, an optimistic RL algorithm must over-estimate the true value function (optimism) but not by so much that it is inaccurate (estimation error)
We re-interpret these scalable optimistic model-based algorithms as solving a tractable noise augmented MDP.
We show that if this error is reduced, optimistic model-based RL algorithms can match state-of-the-art performance in continuous control problems.
arXiv Detail & Related papers (2020-06-21T20:53:19Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.