MICRO: Model-Based Offline Reinforcement Learning with a Conservative Bellman Operator
- URL: http://arxiv.org/abs/2312.03991v2
- Date: Wed, 17 Apr 2024 04:54:39 GMT
- Title: MICRO: Model-Based Offline Reinforcement Learning with a Conservative Bellman Operator
- Authors: Xiao-Yin Liu, Xiao-Hu Zhou, Guotao Li, Hao Li, Mei-Jiang Gui, Tian-Yu Xiang, De-Xing Huang, Zeng-Guang Hou,
- Abstract summary: offline reinforcement learning (RL) faces a significant challenge of distribution shift.
Model-free offline RL penalizes the Q value for out-of-distribution (OOD) data or constrains the policy closed to the behavior policy to tackle this problem.
This paper proposes a new model-based offline algorithm with a conservative Bellman operator (MICRO)
- Score: 13.140242573639629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning (RL) faces a significant challenge of distribution shift. Model-free offline RL penalizes the Q value for out-of-distribution (OOD) data or constrains the policy closed to the behavior policy to tackle this problem, but this inhibits the exploration of the OOD region. Model-based offline RL, which uses the trained environment model to generate more OOD data and performs conservative policy optimization within that model, has become an effective method for this problem. However, the current model-based algorithms rarely consider agent robustness when incorporating conservatism into policy. Therefore, the new model-based offline algorithm with a conservative Bellman operator (MICRO) is proposed. This method trades off performance and robustness via introducing the robust Bellman operator into the algorithm. Compared with previous model-based algorithms with robust adversarial models, MICRO can significantly reduce the computation cost by only choosing the minimal Q value in the state uncertainty set. Extensive experiments demonstrate that MICRO outperforms prior RL algorithms in offline RL benchmark and is considerably robust to adversarial perturbations.
Related papers
- Towards Robust Model-Based Reinforcement Learning Against Adversarial Corruption [60.958746600254884]
This study tackles the challenges of adversarial corruption in model-based reinforcement learning (RL)
We introduce an algorithm called corruption-robust optimistic MLE (CR-OMLE), which leverages total-variation (TV)-based information ratios as uncertainty weights for MLE.
We extend our weighting technique to the offline setting, and propose an algorithm named corruption-robust pessimistic MLE (CR-PMLE)
arXiv Detail & Related papers (2024-02-14T07:27:30Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - Online Policy Optimization for Robust MDP [17.995448897675068]
Reinforcement learning (RL) has exceeded human performance in many synthetic settings such as video games and Go.
In this work, we consider online robust Markov decision process (MDP) by interacting with an unknown nominal system.
We propose a robust optimistic policy optimization algorithm that is provably efficient.
arXiv Detail & Related papers (2022-09-28T05:18:20Z) - Robust Reinforcement Learning using Offline Data [23.260211453437055]
We propose a robust reinforcement learning algorithm called Robust Fitted Q-Iteration (RFQI)
RFQI uses only an offline dataset to learn the optimal robust policy.
We prove that RFQI learns a near-optimal robust policy under standard assumptions.
arXiv Detail & Related papers (2022-08-10T03:47:45Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Overcoming Model Bias for Robust Offline Deep Reinforcement Learning [3.1325640909772403]
MOOSE is an algorithm which ensures low model bias by keeping the policy within the support of the data.
We compare MOOSE with state-of-the-art model-free, offline RL algorithms BRAC, BEAR and BCQ on the Industrial Benchmark and MuJoCo continuous control tasks in terms of robust performance.
arXiv Detail & Related papers (2020-08-12T19:08:55Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.