FGeo-TP: A Language Model-Enhanced Solver for Geometry Problems
- URL: http://arxiv.org/abs/2402.09047v1
- Date: Wed, 14 Feb 2024 09:44:28 GMT
- Title: FGeo-TP: A Language Model-Enhanced Solver for Geometry Problems
- Authors: Yiming He, Jia Zou, Xiaokai Zhang, Na Zhu, Tuo Leng
- Abstract summary: We introduce FGeo-TP (Theorem Predictor), which utilizes the language model to predict theorem sequences for solving geometry problems.
Our results demonstrate a significant increase in the problem-solving rate of the language model-enhanced FGeo-TP on the FormalGeo7k dataset.
- Score: 1.137457877869062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of contemporary artificial intelligence techniques to address
geometric problems and automated deductive proof has always been a grand
challenge to the interdiscipline field of mathematics and artificial
Intelligence. This is the fourth article in a series of our works, in our
previous work, we established of a geometric formalized system known as
FormalGeo. Moreover we annotated approximately 7000 geometric problems, forming
the FormalGeo7k dataset. Despite the FGPS (Formal Geometry Problem Solver) can
achieve interpretable algebraic equation solving and human-like deductive
reasoning, it often experiences timeouts due to the complexity of the search
strategy. In this paper, we introduced FGeo-TP (Theorem Predictor), which
utilizes the language model to predict theorem sequences for solving geometry
problems. We compared the effectiveness of various Transformer architectures,
such as BART or T5, in theorem prediction, implementing pruning in the search
process of FGPS, thereby improving its performance in solving geometry
problems. Our results demonstrate a significant increase in the problem-solving
rate of the language model-enhanced FGeo-TP on the FormalGeo7k dataset, rising
from 39.7% to 80.86%. Furthermore, FGeo-TP exhibits notable reductions in
solving time and search steps across problems of varying difficulty levels.
Related papers
- Fuse, Reason and Verify: Geometry Problem Solving with Parsed Clauses from Diagram [78.79651421493058]
We propose a neural-symbolic model for plane geometry problem solving (PGPS) with three key steps: modal fusion, reasoning process and knowledge verification.
For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively.
We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge solvers.
arXiv Detail & Related papers (2024-07-10T02:45:22Z) - GOLD: Geometry Problem Solver with Natural Language Description [7.9345421580482185]
We present the Geometry problem sOlver with natural Language Description (GOLD) model.
GOLD enhances the extraction of geometric relations by separately processing symbols and geometric primitives within the diagram.
It converts the extracted relations into natural language descriptions, efficiently utilizing large language models to solve geometry math problems.
arXiv Detail & Related papers (2024-05-01T13:00:51Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - GAPS: Geometry-Aware Problem Solver [7.9345421580482185]
Geometry problem solving presents a formidable challenge within the NLP community.
Existing approaches often rely on models designed for solving math word problems, neglecting the unique characteristics of geometry math problems.
In this study, we propose the Geometry-Aware Problem Solver (GAPS) model.
GAPS is specifically designed to generate solution programs for geometry math problems of various types.
arXiv Detail & Related papers (2024-01-29T16:48:34Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - FormalGeo: An Extensible Formalized Framework for Olympiad Geometric
Problem Solving [9.73597821684857]
This is the first paper in a series of work we have accomplished over the past three years.
In this paper, we have constructed a consistent formal plane geometry system.
This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning.
arXiv Detail & Related papers (2023-10-27T09:55:12Z) - UniGeo: Unifying Geometry Logical Reasoning via Reformulating
Mathematical Expression [127.68780714438103]
Two main geometry problems: calculation and proving, are usually treated as two specific tasks.
We construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems.
We also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously.
arXiv Detail & Related papers (2022-12-06T04:37:51Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
We construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language.
We propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem solver (Inter-GPS)
Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.
arXiv Detail & Related papers (2021-05-10T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.