G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model
- URL: http://arxiv.org/abs/2312.11370v1
- Date: Mon, 18 Dec 2023 17:36:20 GMT
- Title: G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model
- Authors: Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei
Wang, Lanqing Hong, Jianhua Han, Hang Xu, Zhenguo Li, Lingpeng Kong
- Abstract summary: Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
- Score: 124.68242155098189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable proficiency in human-level
reasoning and generation capabilities, which encourages extensive research on
their application in mathematical problem solving. However, current work has
been largely focused on text-based mathematical problems, with limited
investigation in problems involving geometric information. Addressing this gap,
we aim to enable LLMs to solve geometric problems by understanding image input.
We first analyze the limitations of current Multimodal Large Language Models
(MLLMs) in this area: they struggle to accurately comprehending basic geometric
elements and their relationships. To overcome these challenges, we take
advantage of the unique characteristics of geometric problems (such as unique
geometric logical form, and geometric scalability) and the capacity of the
textual LLMs to build an enriched multimodal geometry dataset based on existing
data. The augmented dataset, Geo170K, contains more than 170K geometric
image-caption and question-answer pairs. Utilizing our constructed Geo170K
dataset, we develop G-LLaVA, which demonstrates exceptional performance in
solving geometric problems, significantly outperforming GPT-4-V on the
MathVista benchmark with only 7B parameters.
Related papers
- R-CoT: Reverse Chain-of-Thought Problem Generation for Geometric Reasoning in Large Multimodal Models [86.06825304372613]
We propose a two-stage Reverse Chain-of-Thought (R-CoT) geometry problem generation pipeline.
First, we introduce GeoChain to produce high-fidelity geometric images and corresponding descriptions.
We then design a Reverse A&Q method that reasons step-by-step based on the descriptions and generates questions in reverse from the reasoning results.
arXiv Detail & Related papers (2024-10-23T13:58:39Z) - GeoCoder: Solving Geometry Problems by Generating Modular Code through Vision-Language Models [10.443672399225983]
Vision-parametric models (VLMs) have made significant progress in various multimodal tasks.
They still struggle with geometry problems and are significantly limited by their inability to perform mathematical operations not seen during pre-training.
We present GeoCoder, which leverages modular code-finetuning to generate and execute code using a predefined geometry function library.
arXiv Detail & Related papers (2024-10-17T12:56:52Z) - Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver [11.69164802295844]
We introduce a new framework that integrates visual features, geometric formal language, and natural language representations.
We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions.
Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
arXiv Detail & Related papers (2024-09-06T12:11:06Z) - Fuse, Reason and Verify: Geometry Problem Solving with Parsed Clauses from Diagram [78.79651421493058]
We propose a neural-symbolic model for plane geometry problem solving (PGPS) with three key steps: modal fusion, reasoning process and knowledge verification.
For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively.
We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge solvers.
arXiv Detail & Related papers (2024-07-10T02:45:22Z) - GeoGPT4V: Towards Geometric Multi-modal Large Language Models with Geometric Image Generation [15.931398242118073]
GPT-4 and GPT-4V are used to generate basic geometry problems with aligned text and images.
We have produced a dataset of 4.9K geometry problems and combined it with 19K open-source data to form our GeoGPT4V dataset.
Results demonstrate that the GeoGPT4V dataset significantly improves the geometry performance of various models on the MathVista and MathVision benchmarks.
arXiv Detail & Related papers (2024-06-17T13:04:27Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context.
Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints.
Our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images.
arXiv Detail & Related papers (2024-02-08T17:57:59Z) - GeomVerse: A Systematic Evaluation of Large Models for Geometric
Reasoning [17.61621287003562]
We evaluate vision language models (VLMs) along various axes through the lens of geometry problems.
We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes.
The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry.
arXiv Detail & Related papers (2023-12-19T15:25:39Z) - UniGeo: Unifying Geometry Logical Reasoning via Reformulating
Mathematical Expression [127.68780714438103]
Two main geometry problems: calculation and proving, are usually treated as two specific tasks.
We construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems.
We also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously.
arXiv Detail & Related papers (2022-12-06T04:37:51Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.