Measuring Exploration in Reinforcement Learning via Optimal Transport in
Policy Space
- URL: http://arxiv.org/abs/2402.09113v1
- Date: Wed, 14 Feb 2024 11:55:50 GMT
- Title: Measuring Exploration in Reinforcement Learning via Optimal Transport in
Policy Space
- Authors: Reabetswe M. Nkhumise, Debabrota Basu, Tony J. Prescott, Aditya Gilra
- Abstract summary: We quantify and compare the amount of exploration and learning accomplished by a Reinforcement Learning (RL) algorithm.
Specifically, we propose a novel measure, named Exploration Index, that quantifies the relative effort of knowledge transfer (transferability) by an RL algorithm in comparison to supervised learning (SL)
The comparison is established by formulating learning in RL as a sequence of SL tasks, and using optimal transport based metrics to compare the total path traversed by the RL and SL algorithms in the data distribution space.
- Score: 9.208078107007942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploration is the key ingredient of reinforcement learning (RL) that
determines the speed and success of learning. Here, we quantify and compare the
amount of exploration and learning accomplished by a Reinforcement Learning
(RL) algorithm. Specifically, we propose a novel measure, named Exploration
Index, that quantifies the relative effort of knowledge transfer
(transferability) by an RL algorithm in comparison to supervised learning (SL)
that transforms the initial data distribution of RL to the corresponding final
data distribution. The comparison is established by formulating learning in RL
as a sequence of SL tasks, and using optimal transport based metrics to compare
the total path traversed by the RL and SL algorithms in the data distribution
space. We perform extensive empirical analysis on various environments and with
multiple algorithms to demonstrate that the exploration index yields insights
about the exploration behaviour of any RL algorithm, and also allows us to
compare the exploratory behaviours of different RL algorithms.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Surpassing legacy approaches to PWR core reload optimization with single-objective Reinforcement learning [0.0]
We have developed methods based on Deep Reinforcement Learning (DRL) for both single- and multi-objective optimization.
In this paper, we demonstrate the advantage of our RL-based approach, specifically using Proximal Policy Optimization (PPO)
PPO adapts its search capability via a policy with learnable weights, allowing it to function as both a global and local search method.
arXiv Detail & Related papers (2024-02-16T19:35:58Z) - Nash Learning from Human Feedback [86.09617990412941]
We introduce an alternative pipeline for the fine-tuning of large language models using pairwise human feedback.
We term this approach Nash learning from human feedback (NLHF)
We present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent.
arXiv Detail & Related papers (2023-12-01T19:26:23Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Truncating Trajectories in Monte Carlo Reinforcement Learning [48.97155920826079]
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal.
We propose an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths.
We show that an appropriate truncation of the trajectories can succeed in improving performance.
arXiv Detail & Related papers (2023-05-07T19:41:57Z) - Deep Black-Box Reinforcement Learning with Movement Primitives [15.184283143878488]
We present a new algorithm for deep reinforcement learning (RL)
It is based on differentiable trust region layers, a successful on-policy deep RL algorithm.
We compare our ERL algorithm to state-of-the-art step-based algorithms in many complex simulated robotic control tasks.
arXiv Detail & Related papers (2022-10-18T06:34:52Z) - A Policy Efficient Reduction Approach to Convex Constrained Deep
Reinforcement Learning [2.811714058940267]
We propose a new variant of the conditional gradient (CG) type algorithm, which generalizes the minimum norm point (MNP) method.
Our method reduces the memory costs by an order of magnitude, and achieves better performance, demonstrating both its effectiveness and efficiency.
arXiv Detail & Related papers (2021-08-29T20:51:32Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.