論文の概要: Less is More: Fewer Interpretable Region via Submodular Subset Selection
- arxiv url: http://arxiv.org/abs/2402.09164v1
- Date: Wed, 14 Feb 2024 13:30:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 15:30:22.008005
- Title: Less is More: Fewer Interpretable Region via Submodular Subset Selection
- Title(参考訳): less is more: submodular subset selection による解釈可能な領域の削減
- Authors: Ruoyu Chen, Hua Zhang, Siyuan Liang, Jingzhi Li, Xiaochun Cao
- Abstract要約: 本稿では,上述の画像帰属問題を部分モジュラ部分選択問題として再モデル化する。
我々は,より精密な解釈領域を発見するために,新しい部分モジュラー関数を構築した。
正しく予測されたサンプルに対しては,HSIC-Attributionに対する平均4.9%と2.5%の利得で,Deletion and Insertionスコアを改善した。
- 参考スコア(独自算出の注目度): 58.01691615408149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image attribution algorithms aim to identify important regions that are
highly relevant to model decisions. Although existing attribution solutions can
effectively assign importance to target elements, they still face the following
challenges: 1) existing attribution methods generate inaccurate small regions
thus misleading the direction of correct attribution, and 2) the model cannot
produce good attribution results for samples with wrong predictions. To address
the above challenges, this paper re-models the above image attribution problem
as a submodular subset selection problem, aiming to enhance model
interpretability using fewer regions. To address the lack of attention to local
regions, we construct a novel submodular function to discover more accurate
fine-grained interpretation regions. To enhance the attribution effect for all
samples, we also impose four different constraints on the selection of
sub-regions, i.e., confidence, effectiveness, consistency, and collaboration
scores, to assess the importance of various subsets. Moreover, our theoretical
analysis substantiates that the proposed function is in fact submodular.
Extensive experiments show that the proposed method outperforms SOTA methods on
two face datasets (Celeb-A and VGG-Face2) and one fine-grained dataset
(CUB-200-2011). For correctly predicted samples, the proposed method improves
the Deletion and Insertion scores with an average of 4.9% and 2.5% gain
relative to HSIC-Attribution. For incorrectly predicted samples, our method
achieves gains of 81.0% and 18.4% compared to the HSIC-Attribution algorithm in
the average highest confidence and Insertion score respectively. The code is
released at https://github.com/RuoyuChen10/SMDL-Attribution.
- Abstract(参考訳): 画像帰属アルゴリズムは、モデル決定に非常に関連する重要な領域を特定することを目的としている。
既存の属性ソリューションは、ターゲット要素に効果的に重要度を割り当てることができますが、それでも以下の課題に直面します。
1)既存の帰属法は、不正確な小領域を生成し、正しい帰属の方向を誤解させる。
2) モデルでは, 誤った予測を行うサンプルに対して良好な帰属結果が得られない。
上記の課題に対処するため,本論文では,より少ない領域を用いたモデル解釈可能性の向上を目的としたサブモジュール部分集合選択問題として,上記の画像帰属問題をモデル化する。
地域への注意の欠如に対処するために,より正確な細粒度解釈領域を発見するための新しいサブモジュラー関数を構築した。
また,すべてのサンプルに対する帰属効果を高めるために,サブリージョンの選択に4つの制約,すなわち信頼性,有効性,一貫性,コラボレーションスコアを課し,各サブセットの重要性を評価する。
さらに,本解析では,提案する関数が実は部分モジュラーであることを示す。
大規模な実験により,提案手法は2つの顔データセット(Celeb-AとVGG-Face2)と1つのきめ細かいデータセット(CUB-200-2011)においてSOTA法より優れていた。
正しく予測されたサンプルに対しては,HSIC-Attributionに対する平均4.9%と2.5%の利得で,Deletion and Insertionスコアを改善した。
提案手法は, HSIC-Attributionアルゴリズムの平均信頼度と挿入率に対して, それぞれ81.0%, 18.4%のゲインを達成している。
コードはhttps://github.com/RuoyuChen10/SMDL-Attributionで公開されている。
関連論文リスト
- Interpreting Object-level Foundation Models via Visual Precision Search [53.807678972967224]
より少ない領域で正確な属性マップを生成する視覚的精度探索法を提案する。
本手法は,マルチモーダル融合による帰属問題を克服するために,内部モデルパラメータをバイパスする。
提案手法は,複数の評価指標にまたがる既存の手法を超越して,視覚的接地や物体検出タスクにおける障害を解釈することができる。
論文 参考訳(メタデータ) (2024-11-25T08:54:54Z) - Improving Distribution Alignment with Diversity-based Sampling [0.0]
ドメインシフトは機械学習においてユビキタスであり、実際のデータにデプロイすると、モデルのパフォーマンスが大幅に低下する可能性がある。
本稿では,各サンプル小バッチの多様性を誘導することにより,これらの推定値を改善することを提案する。
同時にデータのバランスを保ち、勾配のばらつきを低減し、それによってモデルの一般化能力を高める。
論文 参考訳(メタデータ) (2024-10-05T17:26:03Z) - Anomaly Detection Under Uncertainty Using Distributionally Robust
Optimization Approach [0.9217021281095907]
異常検出は、大多数のパターンに従わないデータポイントを見つける問題として定義される。
1クラスのサポートベクトルマシン(SVM)メソッドは、通常のデータポイントと異常を区別するための決定境界を見つけることを目的としている。
誤分類の確率が低い分布的に頑健な確率制約モデルを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:13:22Z) - Distributional Shift Adaptation using Domain-Specific Features [41.91388601229745]
オープンワールドのシナリオでは、ビッグデータのストリーミングはOut-Of-Distribution(OOD)になる。
特徴が不変か否かにかかわらず、一般の相関に依拠する単純かつ効果的な手法を提案する。
提案手法では,OODベースモデルによって同定された最も確実なサンプルを用いて,対象領域に効果的に適応する新しいモデルを訓練する。
論文 参考訳(メタデータ) (2022-11-09T04:16:21Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Selecting Treatment Effects Models for Domain Adaptation Using Causal
Knowledge [82.5462771088607]
監視されていないドメイン適応設定下でITE法用に特別に設計された新しいモデル選択メトリックを提案する。
特に,介入効果の予測が対象領域の既知の因果構造を満たすモデルを選択することを提案する。
論文 参考訳(メタデータ) (2021-02-11T21:03:14Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Probabilistic Anchor Assignment with IoU Prediction for Object Detection [9.703212439661097]
オブジェクト検出では、どのアンカーを正または負のサンプルとして割り当てるか、すなわちアンカー代入(アンカー代入)がモデルの性能に大きく影響を与えるコアプロシージャとして明らかにされている。
本稿では,モデルの学習状況に応じて,アンカーを正と負のサンプルに適応的に分離する新しいアンカー代入戦略を提案する。
論文 参考訳(メタデータ) (2020-07-16T04:26:57Z) - Generalized Focal Loss: Learning Qualified and Distributed Bounding
Boxes for Dense Object Detection [85.53263670166304]
一段検出器は基本的に、物体検出を密度の高い分類と位置化として定式化する。
1段検出器の最近の傾向は、局所化の質を推定するために個別の予測分岐を導入することである。
本稿では, 上記の3つの基本要素, 品質推定, 分類, ローカライゼーションについて述べる。
論文 参考訳(メタデータ) (2020-06-08T07:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。