Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks
- URL: http://arxiv.org/abs/2402.09177v2
- Date: Wed, 02 Oct 2024 10:43:07 GMT
- Title: Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks
- Authors: Yixin Cheng, Markos Georgopoulos, Volkan Cevher, Grigorios G. Chrysos,
- Abstract summary: Large Language Models (LLMs) are susceptible to Jailbreaking attacks.
Jailbreaking attacks aim to extract harmful information by subtly modifying the attack query.
We focus on a new attack form, called Contextual Interaction Attack.
- Score: 55.603893267803265
- License:
- Abstract: Large Language Models (LLMs) are susceptible to Jailbreaking attacks, which aim to extract harmful information by subtly modifying the attack query. As defense mechanisms evolve, directly obtaining harmful information becomes increasingly challenging for Jailbreaking attacks. In this work, inspired from Chomsky's transformational-generative grammar theory and human practices of indirect context to elicit harmful information, we focus on a new attack form, called Contextual Interaction Attack. We contend that the prior context\u2014the information preceding the attack query\u2014plays a pivotal role in enabling strong Jailbreaking attacks. Specifically, we propose a first multi-turn approach that leverages benign preliminary questions to interact with the LLM. Due to the autoregressive nature of LLMs, which use previous conversation rounds as context during generation, we guide the model's question-response pair to construct a context that is semantically aligned with the attack query to execute the attack. We conduct experiments on seven different LLMs and demonstrate the efficacy of this attack, which is black-box and can also transfer across LLMs. We believe this can lead to further developments and understanding of security in LLMs.
Related papers
- Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
Large Language Models (LLMs) have performed exceptionally in various text-generative tasks.
"jailbreaking" induces the model to generate malicious responses against the usage policy and society.
We propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods.
arXiv Detail & Related papers (2024-07-05T06:57:30Z) - WordGame: Efficient & Effective LLM Jailbreak via Simultaneous Obfuscation in Query and Response [23.344727384686898]
We analyze the common pattern of the current safety alignment and show that it is possible to exploit such patterns for jailbreaking attacks by simultaneous obfuscation in queries and responses.
Specifically, we propose WordGame attack, which replaces malicious words with word games to break down the adversarial intent of a query.
arXiv Detail & Related papers (2024-05-22T21:59:22Z) - Chain of Attack: a Semantic-Driven Contextual Multi-Turn attacker for LLM [27.046944831084776]
Large language models (LLMs) have achieved remarkable performance in various natural language processing tasks.
CoA is a semantic-driven contextual multi-turn attack method that adaptively adjusts the attack policy.
We show that CoA can effectively expose the vulnerabilities of LLMs, and outperform existing attack methods.
arXiv Detail & Related papers (2024-05-09T08:15:21Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
It has been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements.
We argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking.
arXiv Detail & Related papers (2024-02-21T18:59:13Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
We propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors.
Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable.
arXiv Detail & Related papers (2023-07-27T17:49:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.