論文の概要: Momentum Approximation in Asynchronous Private Federated Learning
- arxiv url: http://arxiv.org/abs/2402.09247v2
- Date: Fri, 06 Dec 2024 23:10:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:48:29.015795
- Title: Momentum Approximation in Asynchronous Private Federated Learning
- Title(参考訳): Asynchronous Private Federated Learningにおけるモーメントム近似
- Authors: Tao Yu, Congzheng Song, Jianyu Wang, Mona Chitnis,
- Abstract要約: 本稿では,すべての履歴モデル更新の最適重み付き平均を求めることにより,バイアスを最小限に抑えるモーメント近似を提案する。
我々は、ベンチマークFLデータセットにおいて、モーメント近似が収束のスピードアップで1.15のテクスム−-4タイムを達成できることを実証的に実証した。
- 参考スコア(独自算出の注目度): 24.325330433282808
- License:
- Abstract: Asynchronous protocols have been shown to improve the scalability of federated learning (FL) with a massive number of clients. Meanwhile, momentum-based methods can achieve the best model quality in synchronous FL. However, naively applying momentum in asynchronous FL algorithms leads to slower convergence and degraded model performance. It is still unclear how to effective combinie these two techniques together to achieve a win-win. In this paper, we find that asynchrony introduces implicit bias to momentum updates. In order to address this problem, we propose momentum approximation that minimizes the bias by finding an optimal weighted average of all historical model updates. Momentum approximation is compatible with secure aggregation as well as differential privacy, and can be easily integrated in production FL systems with a minor communication and storage cost. We empirically demonstrate that on benchmark FL datasets, momentum approximation can achieve $1.15 \textrm{--}4\times$ speed up in convergence compared to naively combining asynchronous FL with momentum.
- Abstract(参考訳): 非同期プロトコルは、膨大な数のクライアントで統合学習(FL)のスケーラビリティを向上させることが示されている。
一方、運動量に基づく手法は同期FLにおいて最高のモデル品質を達成することができる。
しかし, 非同期FLアルゴリズムにおけるモーメントの適用により, 収束が遅く, モデル性能が劣化する。
勝敗を達成するためにこの2つのテクニックを効果的に組み合わせる方法については、いまだに不明である。
本稿では,同期がモーメント更新に暗黙のバイアスをもたらすことを明らかにする。
この問題に対処するために,すべての歴史的モデル更新の最適重み付き平均を求めることにより,バイアスを最小限に抑えるモーメント近似を提案する。
モメンタム近似は、セキュアなアグリゲーションや差分プライバシーと互換性があり、小さな通信とストレージコストでプロダクションのFLシステムに容易に統合できる。
我々は、ベンチマークFLデータセットにおいて、運動量近似が1.15 のtextrm{--}4\times$収束速度を達成することを実証的に実証した。
関連論文リスト
- FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - FedAST: Federated Asynchronous Simultaneous Training [27.492821176616815]
フェデレートラーニング(FL)は、デバイスやクライアントがプライベートデータを共有せずに機械学習(ML)モデルを協調的にトレーニングすることを可能にする。
FLにおける既存の作業の多くは、1つのタスクのモデルを効率的に学習することに集中しています。
本稿では,共通データセットを用いた複数のFLモデルの同時学習を提案する。
論文 参考訳(メタデータ) (2024-06-01T05:14:20Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Enhancing Convergence in Federated Learning: A Contribution-Aware
Asynchronous Approach [0.0]
Federated Learning(FL)は、クライアントがプライバシを保持しながらデータ上でモデルをトレーニングできる分散機械学習パラダイムである。
フェデレート平均化(FedAvg)やその変種などのFLアルゴリズムは、多くのシナリオにおいてよく収束することが示されている。
しかし、これらの手法ではクライアントがローカル更新を同期的にサーバにアップロードする必要があるため、現実的なFL設定では遅くて信頼性が低い。
本稿では、受信した更新の安定性と統計的不均一性を考慮に入れたコントリビューション対応非同期FL法を提案する。
論文 参考訳(メタデータ) (2024-02-16T12:10:53Z) - AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices [61.66943750584406]
異種環境におけるAEDFL(Asynchronous Efficient Decentralized FL framework)を提案する。
まず、FL収束を改善するための効率的なモデル集約手法を用いた非同期FLシステムモデルを提案する。
次に,より優れた精度を実現するために,動的安定化を考慮したモデル更新手法を提案する。
第3に,通信コストと計算コストを大幅に削減する適応スパース学習法を提案する。
論文 参考訳(メタデータ) (2023-12-18T05:18:17Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning(FL)は、デバイス上でのトレーニングとサーバベースのアグリゲーションを組み合わせた、協調的な機械学習フレームワークである。
FLシステムにおけるストラグラー問題に対処するために,周期的アグリゲーションを用いた非同期FL設計を提案する。
年齢認識の集約重み付け設計は,非同期FL設定における学習性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-14T17:33:01Z) - Efficient and Light-Weight Federated Learning via Asynchronous
Distributed Dropout [22.584080337157168]
非同期学習プロトコルは最近、特にフェデレートラーニング(FL)設定において注目を集めている。
分散環境でデバイスの不均一性を処理するためにドロップアウト正規化を利用する新しい非同期FLフレームワークである textttAsyncDrop を提案する。
全体として、textttAsyncDropは、最先端の非同期メソッドと比較してパフォーマンスが向上する。
論文 参考訳(メタデータ) (2022-10-28T13:00:29Z) - Time-triggered Federated Learning over Wireless Networks [48.389824560183776]
無線ネットワーク上での時系列FLアルゴリズム(TT-Fed)を提案する。
提案したTT-Fedアルゴリズムは, それぞれ最大12.5%, 5%の収束試験精度を向上する。
論文 参考訳(メタデータ) (2022-04-26T16:37:29Z) - Blockchain-enabled Server-less Federated Learning [5.065631761462706]
我々は、(BC)技術によって強化された非同期サーバーレスフェデレートラーニングソリューションに焦点を当てる。
主に採用されているFLアプローチとは対照的に、クライアントがローカル更新を送信する際にモデルアグリゲーションを行う非同期手法を提唱する。
論文 参考訳(メタデータ) (2021-12-15T07:41:23Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL)は、新しく登場した分散機械学習(ML)フレームワークである。
本稿では,FLシステムにおけるトラグラー問題を排除するために,周期的なアグリゲーションを伴う非同期FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-23T18:57:08Z) - Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with
Delayed Gradients [21.63719641718363]
フェデレーション・ラーニング(federated learning, fl)は、多数の分散コンピューティングデバイスで合同モデルをトレーニングする、新しい機械学習フレームワークである。
本稿では,効率と有効性における学習バランスを実現するための新しいflアルゴリズムであるhybrid federated learning(hfl)を提案する。
論文 参考訳(メタデータ) (2021-02-12T02:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。