Comparing supervised learning dynamics: Deep neural networks match human data efficiency but show a generalisation lag
- URL: http://arxiv.org/abs/2402.09303v3
- Date: Fri, 12 Jul 2024 12:47:19 GMT
- Title: Comparing supervised learning dynamics: Deep neural networks match human data efficiency but show a generalisation lag
- Authors: Lukas S. Huber, Fred W. Mast, Felix A. Wichmann,
- Abstract summary: Recent research has seen many behavioral comparisons between humans and deep neural networks (DNNs) in the domain of image classification.
Here we report a detailed investigation of the learning dynamics in human observers and various classic and state-of-the-art DNNs.
Across the whole learning process we evaluate and compare how well learned representations can be generalized to previously unseen test data.
- Score: 3.0333265803394993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has seen many behavioral comparisons between humans and deep neural networks (DNNs) in the domain of image classification. Often, comparison studies focus on the end-result of the learning process by measuring and comparing the similarities in the representations of object categories once they have been formed. However, the process of how these representations emerge -- that is, the behavioral changes and intermediate stages observed during the acquisition -- is less often directly and empirically compared. Here we report a detailed investigation of the learning dynamics in human observers and various classic and state-of-the-art DNNs. We develop a constrained supervised learning environment to align learning-relevant conditions such as starting point, input modality, available input data and the feedback provided. Across the whole learning process we evaluate and compare how well learned representations can be generalized to previously unseen test data. Comparisons across the entire learning process indicate that DNNs demonstrate a level of data efficiency comparable to human learners, challenging some prevailing assumptions in the field. However, our results also reveal representational differences: while DNNs' learning is characterized by a pronounced generalisation lag, humans appear to immediately acquire generalizable representations without a preliminary phase of learning training set-specific information that is only later transferred to novel data.
Related papers
- Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories.
We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation.
In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks.
arXiv Detail & Related papers (2023-06-15T08:18:29Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - Guiding Visual Attention in Deep Convolutional Neural Networks Based on
Human Eye Movements [0.0]
Deep Convolutional Neural Networks (DCNNs) were originally inspired by principles of biological vision.
Recent advances in deep learning seem to decrease this similarity.
We investigate a purely data-driven approach to obtain useful models.
arXiv Detail & Related papers (2022-06-21T17:59:23Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - How to Train Your Neural Network: A Comparative Evaluation [1.3654846342364304]
We discuss and compare current state-of-the-art frameworks for large scale distributed deep learning.
We present empirical results comparing their performance on large image and language training tasks.
Based on our results, we discuss algorithmic and implementation portions of each framework which hinder performance.
arXiv Detail & Related papers (2021-11-09T04:24:42Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
Domain-Agnostic Contrastive Learning (DACL) is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss.
Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-10T07:06:03Z) - Seeing eye-to-eye? A comparison of object recognition performance in
humans and deep convolutional neural networks under image manipulation [0.0]
This study aims towards a behavioral comparison of visual core object recognition performance between humans and feedforward neural networks.
Analyses of accuracy revealed that humans not only outperform DCNNs on all conditions, but also display significantly greater robustness towards shape and most notably color alterations.
arXiv Detail & Related papers (2020-07-13T10:26:30Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
We present a class of neural networks with solvable training dynamics.
We find good agreement between our model's predictions and training dynamics in realistic deep learning settings.
We believe our results shed light on characteristics of models trained at different learning rates.
arXiv Detail & Related papers (2020-03-04T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.