Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss
- URL: http://arxiv.org/abs/2103.05902v1
- Date: Wed, 10 Mar 2021 07:06:03 GMT
- Title: Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss
- Authors: Dongseok Shim and H. Jin Kim
- Abstract summary: Domain-Agnostic Contrastive Learning (DACL) is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss.
Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods.
- Score: 25.798361683744684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have been widely studied in autonomous driving
applications such as semantic segmentation or depth estimation. However,
training a neural network in a supervised manner requires a large amount of
annotated labels which are expensive and time-consuming to collect. Recent
studies leverage synthetic data collected from a virtual environment which are
much easier to acquire and more accurate compared to data from the real world,
but they usually suffer from poor generalization due to the inherent domain
shift problem. In this paper, we propose a Domain-Agnostic Contrastive Learning
(DACL) which is a two-stage unsupervised domain adaptation framework with
cyclic adversarial training and contrastive loss. DACL leads the neural network
to learn domain-agnostic representation to overcome performance degradation
when there exists a difference between training and test data distribution. Our
proposed approach achieves better performance in the monocular depth estimation
task compared to previous state-of-the-art methods and also shows effectiveness
in the semantic segmentation task.
Related papers
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
Unsupervised domain adaptation (UDA) is proposed to counter the performance drop on data in a target domain.
UDA has yielded promising results on natural image processing, video analysis, natural language processing, time-series data analysis, medical image analysis, etc.
arXiv Detail & Related papers (2022-08-15T20:05:07Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Algorithms and Theory for Supervised Gradual Domain Adaptation [19.42476993856205]
We study the problem of supervised gradual domain adaptation, where labeled data from shifting distributions are available to the learner along the trajectory.
Under this setting, we provide the first generalization upper bound on the learning error under mild assumptions.
Our results are algorithm agnostic for a range of loss functions, and only depend linearly on the averaged learning error across the trajectory.
arXiv Detail & Related papers (2022-04-25T13:26:11Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - CADA: Multi-scale Collaborative Adversarial Domain Adaptation for
Unsupervised Optic Disc and Cup Segmentation [3.587294308501889]
We propose a novel unsupervised domain adaptation framework, called Collaborative Adrial Domain Adaptation (CADA)
Our proposed CADA is an interactive paradigm that presents an exquisite collaborative adaptation through both adversarial learning and ensembling weights at different network layers.
We show that our CADA model incorporating multi-scale input training can overcome performance degradation and outperform state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-10-05T23:44:26Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Unsupervised Domain Adaptation for Retinal Vessel Segmentation with
Adversarial Learning and Transfer Normalization [22.186070895966022]
We propose an entropy-based adversarial learning strategy to reduce the distribution discrepancy between source and target domains.
A new transfer normalization layer is proposed to further boost the transferability of the deep network.
Our approach yields significant performance gains compared to other state-of-the-art methods.
arXiv Detail & Related papers (2021-08-04T02:45:37Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.