Graph Koopman Autoencoder for Predictive Covert Communication Against
UAV Surveillance
- URL: http://arxiv.org/abs/2402.09426v1
- Date: Tue, 23 Jan 2024 23:42:55 GMT
- Title: Graph Koopman Autoencoder for Predictive Covert Communication Against
UAV Surveillance
- Authors: Sivaram Krishnan, Jihong Park, Gregory Sherman, Benjamin Campbell,
Jinho Choi
- Abstract summary: Low Probability of Detection (LPD) communication aims to obscure the very presence of radio frequency (RF) signals.
Unmanned Aerial Vehicles (UAVs) can detect RF signals from the ground by hovering over specific areas of interest.
We introduce a novel framework that combines graph neural networks (GNN) with Koopman theory to predict the trajectories of multiple fixed-wing UAVs.
- Score: 29.15836826461713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low Probability of Detection (LPD) communication aims to obscure the very
presence of radio frequency (RF) signals, going beyond just hiding the content
of the communication. However, the use of Unmanned Aerial Vehicles (UAVs)
introduces a challenge, as UAVs can detect RF signals from the ground by
hovering over specific areas of interest. With the growing utilization of UAVs
in modern surveillance, there is a crucial need for a thorough understanding of
their unknown nonlinear dynamic trajectories to effectively implement LPD
communication. Unfortunately, this critical information is often not readily
available, posing a significant hurdle in LPD communication. To address this
issue, we consider a case-study for enabling terrestrial LPD communication in
the presence of multiple UAVs that are engaged in surveillance. We introduce a
novel framework that combines graph neural networks (GNN) with Koopman theory
to predict the trajectories of multiple fixed-wing UAVs over an extended
prediction horizon. Using the predicted UAV locations, we enable LPD
communication in a terrestrial ad-hoc network by controlling nodes' transmit
powers to keep the received power at UAVs' predicted locations minimized. Our
extensive simulations validate the efficacy of the proposed framework in
accurately predicting the trajectories of multiple UAVs, thereby effectively
establishing LPD communication.
Related papers
- Predictive Covert Communication Against Multi-UAV Surveillance Using Graph Koopman Autoencoder [27.178522837149053]
Low Probability of Detection (LPD) communication aims to obscure the presence of radio frequency (RF) signals to evade surveillance.
accurately predicting future locations of UAVs is essential for enabling real-time LPD communication.
We introduce a novel framework termed predictive covert communication, aimed at minimizing detectability in terrestrial ad-hoc networks under multi-UAV surveillance.
arXiv Detail & Related papers (2024-09-25T16:02:45Z) - Graph Attention-based Reinforcement Learning for Trajectory Design and
Resource Assignment in Multi-UAV Assisted Communication [20.79743323142469]
It is challenging for UAV base stations (UAV BSs) to realize trajectory design and resource assignment in unknown environments.
The cooperation and competition between UAV BSs in the communication network leads to a Markov game problem.
In this paper, a novel graph-attention multi-agent trust region (GA-MATR) reinforcement learning framework is proposed to solve the multi-UAV assisted communication problem.
arXiv Detail & Related papers (2024-01-31T14:37:06Z) - Deep Reinforcement Learning for Interference Management in UAV-based 3D
Networks: Potentials and Challenges [137.47736805685457]
We show that interference can still be effectively mitigated even without knowing its channel information.
By harnessing interference, the proposed solutions enable the continued growth of civilian UAVs.
arXiv Detail & Related papers (2023-05-11T18:06:46Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
We study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user.
We propose a novel multi-agent deep reinforcement learning framework, coined a graph attention exchange network (GAXNet)
GAXNet achieves 6.5x lower latency with the target 0.0000001 error rate, compared to a state-of-the-art baseline framework.
arXiv Detail & Related papers (2021-05-22T12:43:25Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we reformulate the multi-UAV trajectory optimization problem with collision avoidance and wireless connectivity constraints.
We propose a decentralized deep reinforcement learning approach to solve the problem.
arXiv Detail & Related papers (2021-04-03T22:22:20Z) - Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm
Control [28.463670610865837]
We propose a distributed Reinforcement Learning (RL) approach that scales to larger swarms without modifications.
Our experiments show that the proposed method can yield effective strategies, which are robust to communication channel impairments.
We also show that our approach achieves better performance compared to a computationally intensive look-ahead.
arXiv Detail & Related papers (2021-03-08T11:06:28Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
How to achieve ubiquitous 3D communication coverage for UAVs in the sky is a new challenge.
We propose a new coverage-aware navigation approach, which exploits the UAV's controllable mobility to design its navigation/trajectory.
We propose a new framework called simultaneous navigation and radio mapping (SNARM), where the UAV's signal measurement is used to train the deep Q network.
arXiv Detail & Related papers (2020-03-17T08:16:14Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.