Predictive Covert Communication Against Multi-UAV Surveillance Using Graph Koopman Autoencoder
- URL: http://arxiv.org/abs/2409.17048v1
- Date: Wed, 25 Sep 2024 16:02:45 GMT
- Title: Predictive Covert Communication Against Multi-UAV Surveillance Using Graph Koopman Autoencoder
- Authors: Sivaram Krishnan, Jihong Park, Gregory Sherman, Benjamin Campbell, Jinho Choi,
- Abstract summary: Low Probability of Detection (LPD) communication aims to obscure the presence of radio frequency (RF) signals to evade surveillance.
accurately predicting future locations of UAVs is essential for enabling real-time LPD communication.
We introduce a novel framework termed predictive covert communication, aimed at minimizing detectability in terrestrial ad-hoc networks under multi-UAV surveillance.
- Score: 27.178522837149053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low Probability of Detection (LPD) communication aims to obscure the presence of radio frequency (RF) signals to evade surveillance. In the context of mobile surveillance utilizing unmanned aerial vehicles (UAVs), achieving LPD communication presents significant challenges due to the UAVs' rapid and continuous movements, which are characterized by unknown nonlinear dynamics. Therefore, accurately predicting future locations of UAVs is essential for enabling real-time LPD communication. In this paper, we introduce a novel framework termed predictive covert communication, aimed at minimizing detectability in terrestrial ad-hoc networks under multi-UAV surveillance. Our data-driven method synergistically integrates graph neural networks (GNN) with Koopman theory to model the complex interactions within a multi-UAV network and facilitating long-term predictions by linearizing the dynamics, even with limited historical data. Extensive simulation results substantiate that the predicted trajectories using our method result in at least 63%-75% lower probability of detection when compared to well-known state-of-the-art baseline approaches, showing promise in enabling low-latency covert operations in practical scenarios.
Related papers
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Graph Attention-based Reinforcement Learning for Trajectory Design and
Resource Assignment in Multi-UAV Assisted Communication [20.79743323142469]
It is challenging for UAV base stations (UAV BSs) to realize trajectory design and resource assignment in unknown environments.
The cooperation and competition between UAV BSs in the communication network leads to a Markov game problem.
In this paper, a novel graph-attention multi-agent trust region (GA-MATR) reinforcement learning framework is proposed to solve the multi-UAV assisted communication problem.
arXiv Detail & Related papers (2024-01-31T14:37:06Z) - Graph Koopman Autoencoder for Predictive Covert Communication Against
UAV Surveillance [29.15836826461713]
Low Probability of Detection (LPD) communication aims to obscure the very presence of radio frequency (RF) signals.
Unmanned Aerial Vehicles (UAVs) can detect RF signals from the ground by hovering over specific areas of interest.
We introduce a novel framework that combines graph neural networks (GNN) with Koopman theory to predict the trajectories of multiple fixed-wing UAVs.
arXiv Detail & Related papers (2024-01-23T23:42:55Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Unsupervised Abnormal Traffic Detection through Topological Flow
Analysis [1.933681537640272]
topological connectivity component of a malicious flow is less exploited.
We present a simple method that facilitate the use of connectivity graph features in unsupervised anomaly detection algorithms.
arXiv Detail & Related papers (2022-05-14T18:52:49Z) - Federated Learning Over Cellular-Connected UAV Networks with Non-IID
Datasets [19.792426676330212]
Federated learning (FL) is a promising distributed learning technique.
This paper proposes a new FL model over a cellular-connected unmanned aerial vehicle (UAV) network.
We propose a tractable analytical framework of the uplink outage probability in the cellular-connected UAV network.
arXiv Detail & Related papers (2021-10-13T23:15:20Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we reformulate the multi-UAV trajectory optimization problem with collision avoidance and wireless connectivity constraints.
We propose a decentralized deep reinforcement learning approach to solve the problem.
arXiv Detail & Related papers (2021-04-03T22:22:20Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.