Advancing Building Energy Modeling with Large Language Models: Exploration and Case Studies
- URL: http://arxiv.org/abs/2402.09579v2
- Date: Fri, 15 Nov 2024 18:20:23 GMT
- Title: Advancing Building Energy Modeling with Large Language Models: Exploration and Case Studies
- Authors: Liang Zhang, Zhelun Chen, Vitaly Ford,
- Abstract summary: The rapid progression in artificial intelligence has facilitated the emergence of large language models like ChatGPT.
This paper investigates the innovative integration of large language models with building energy modeling software.
- Score: 2.8879609855863713
- License:
- Abstract: The rapid progression in artificial intelligence has facilitated the emergence of large language models like ChatGPT, offering potential applications extending into specialized engineering modeling, especially physics-based building energy modeling. This paper investigates the innovative integration of large language models with building energy modeling software, focusing specifically on the fusion of ChatGPT with EnergyPlus. A literature review is first conducted to reveal a growing trend of incorporating large language models in engineering modeling, albeit limited research on their application in building energy modeling. We underscore the potential of large language models in addressing building energy modeling challenges and outline potential applications including simulation input generation, simulation output analysis and visualization, conducting error analysis, co-simulation, simulation knowledge extraction and training, and simulation optimization. Three case studies reveal the transformative potential of large language models in automating and optimizing building energy modeling tasks, underscoring the pivotal role of artificial intelligence in advancing sustainable building practices and energy efficiency. The case studies demonstrate that selecting the right large language model techniques is essential to enhance performance and reduce engineering efforts. The findings advocate a multidisciplinary approach in future artificial intelligence research, with implications extending beyond building energy modeling to other specialized engineering modeling.
Related papers
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Large Language Models Empowered Agent-based Modeling and Simulation: A
Survey and Perspectives [35.04018349811483]
Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities.
We first introduce the background of agent-based modeling and simulation and large language model-empowered agents.
Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios.
arXiv Detail & Related papers (2023-12-19T09:06:45Z) - Opportunities for Large Language Models and Discourse in Engineering
Design [0.0]
We argue that discourse should be regarded as the core of engineering design processes, and therefore should be represented in a digital artifact.
We describe how simulations, experiments, topology optimizations, and other process steps can be integrated into a machine-actionable, discourse-centric design process.
arXiv Detail & Related papers (2023-06-15T14:46:44Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Versatile Energy-Based Probabilistic Models for High Energy Physics [0.0]
We build a multi-purpose energy-based probabilistic model for High Energy Physics events at the Large Hadron Collider.
This framework builds on a powerful generative model and describes higher-order inter-particle interactions.
arXiv Detail & Related papers (2023-02-01T19:00:10Z) - Digital Twin and Artificial Intelligence Incorporated With Surrogate
Modeling for Hybrid and Sustainable Energy Systems [0.3969046654861533]
Surrogate modeling has brought about a revolution in computation in the branches of science and engineering.
Backed by Artificial Intelligence, a surrogate model can present highly accurate results with a significant reduction in computation time.
One of the promising technologies for assessing applicability for the energy system is the digital twin.
arXiv Detail & Related papers (2022-09-30T20:14:16Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
We introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework.
We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space.
arXiv Detail & Related papers (2022-06-13T03:41:31Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
"Nine Motifs of Simulation Intelligence" is a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence.
We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system.
We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery.
arXiv Detail & Related papers (2021-12-06T18:45:31Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.