Exploring the Capabilities of the Frontier Large Language Models for Nuclear Energy Research
- URL: http://arxiv.org/abs/2506.19863v2
- Date: Thu, 26 Jun 2025 22:36:10 GMT
- Title: Exploring the Capabilities of the Frontier Large Language Models for Nuclear Energy Research
- Authors: Ahmed Almeldein, Mohammed Alnaggar, Rick Archibald, Tom Beck, Arpan Biswas, Rike Bostelmann, Wes Brewer, Chris Bryan, Christopher Calle, Cihangir Celik, Rajni Chahal, Jong Youl Choi, Arindam Chowdhury, Mark Cianciosa, Franklin Curtis, Gregory Davidson, Sebastian De Pascuale, Lisa Fassino, Ana Gainaru, Yashika Ghai, Luke Gibson, Qian Gong, Christopher Greulich, Scott Greenwood, Cory Hauck, Ehab Hassan, Rinkle Juneja, Soyoung Kang, Scott Klasky, Atul Kumar, Vineet Kumar, Paul Laiu, Calvin Lear, Yan-Ru Lin, Jono McConnell, Furkan Oz, Rishi Pillai, Anant Raj, Pradeep Ramuhalli, Marie Romedenne, Samantha Sabatino, José Salcedo-Pérez, Nathan D. See, Arpan Sircar, Punam Thankur, Tim Younkin, Xiao-Ying Yu, Prashant Jain, Tom Evans, Prasanna Balaprakash,
- Abstract summary: The AI for Nuclear Energy workshop at Oak Ridge National Laboratory evaluated the potential of Large Language Models (LLMs) to accelerate fusion and fission research.<n>14 interdisciplinary teams explored diverse nuclear science challenges using ChatGPT, Gemini, Claude, and other AI models over a single day.<n>The successful outcomes resulted from expert-driven prompt engineering and treating AI as a complementary tool rather than a replacement for physics-based methods.
- Score: 9.756086474348352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The AI for Nuclear Energy workshop at Oak Ridge National Laboratory evaluated the potential of Large Language Models (LLMs) to accelerate fusion and fission research. Fourteen interdisciplinary teams explored diverse nuclear science challenges using ChatGPT, Gemini, Claude, and other AI models over a single day. Applications ranged from developing foundation models for fusion reactor control to automating Monte Carlo simulations, predicting material degradation, and designing experimental programs for advanced reactors. Teams employed structured workflows combining prompt engineering, deep research capabilities, and iterative refinement to generate hypotheses, prototype code, and research strategies. Key findings demonstrate that LLMs excel at early-stage exploration, literature synthesis, and workflow design, successfully identifying research gaps and generating plausible experimental frameworks. However, significant limitations emerged, including difficulties with novel materials designs, advanced code generation for modeling and simulation, and domain-specific details requiring expert validation. The successful outcomes resulted from expert-driven prompt engineering and treating AI as a complementary tool rather than a replacement for physics-based methods. The workshop validated AI's potential to accelerate nuclear energy research through rapid iteration and cross-disciplinary synthesis while highlighting the need for curated nuclear-specific datasets, workflow automation, and specialized model development. These results provide a roadmap for integrating AI tools into nuclear science workflows, potentially reducing development cycles for safer, more efficient nuclear energy systems while maintaining rigorous scientific standards.
Related papers
- An AI-Driven Thermal-Fluid Testbed for Advanced Small Modular Reactors: Integration of Digital Twin and Large Language Models [4.30384648708148]
This paper presents a multipurpose artificial intelligence (AI)-driven thermal-fluid testbed designed to advance Small Modular Reactor technologies.<n>The platform combines a versatile three-loop thermal-fluid facility with a high-fidelity digital twin and sophisticated AI frameworks for real-time prediction, control, and operational assistance.
arXiv Detail & Related papers (2025-07-08T21:07:30Z) - Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Artificial Intelligence in Reactor Physics: Current Status and Future Prospects [28.708205150779563]
Reactor physics is the study of neutron properties, focusing on using models to examine the interactions between neutrons and materials in nuclear reactors.<n>Artificial intelligence (AI) has made significant contributions to reactor physics, e.g., in operational simulations, safety design, real-time monitoring, core management and maintenance.
arXiv Detail & Related papers (2025-03-04T09:36:58Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [82.21522417363666]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.<n>The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.<n>This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)<n>Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.<n>Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.<n>VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.<n>We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Advancing Building Energy Modeling with Large Language Models: Exploration and Case Studies [2.8879609855863713]
The rapid progression in artificial intelligence has facilitated the emergence of large language models like ChatGPT.
This paper investigates the innovative integration of large language models with building energy modeling software.
arXiv Detail & Related papers (2024-02-14T21:02:07Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.<n>The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.<n>Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - Deep Neural Operator Driven Real Time Inference for Nuclear Systems to Enable Digital Twin Solutions [0.5115559623386964]
This study showcases the generalizability and computational efficiency of DeepONet in solving a challenging particle transport problem.
DeepONet also exhibits remarkable prediction accuracy and speed, outperforming traditional ML methods.
Overall, DeepONet presents a promising and transformative nuclear engineering research and applications tool.
arXiv Detail & Related papers (2023-08-15T01:25:35Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.